Israel Journal of Mathematics

, Volume 10, Issue 3, pp 359–363 | Cite as


  • Paul M. Weichsel


We investigate the structure of finite irregularp-groupsG, such that all proper subvarieties of varG contain only regularp-groups.


Factor Group Proper Subgroup Minimal Normal Subgroup Commutator Subgroup Primitive Root 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. L. Alperin,A classification of n-abelian groups, Canad. J. Math.21 (1969), 1238–1244.MATHMathSciNetGoogle Scholar
  2. 2.
    R. J. Faudree,Regular metabelian groups of prime power order, Bull. Austral. Math. Soc.3 (1970), 49–54.MATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    P. Hall,A contribution to the theory of groups of prime power orders Proc. London Math. Soc.36 (1933), 29–95.MATHCrossRefGoogle Scholar
  4. 4.
    B. Huppert,Endliche Gruppen I, Grund. Math.134, Berlin, 1967.Google Scholar
  5. 5.
    I. D. MacDonald,The variety of regular p-groups, Arch. Math.18 (1967), 359–361.MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    A. Mann,Regular p-groups, Israel J. Math.10 (1971), in press.Google Scholar
  7. 7.
    H. Neumann,Varieties of Groups, Ergeb. Math.37, Berlin, 1967.Google Scholar
  8. 8.
    P. M. Weichsel,Regular p-groups and varieties Math. Z.95 (1967), 223–231.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Hebrew Univeristy 1971

Authors and Affiliations

  • Paul M. Weichsel
    • 1
    • 2
  1. 1.The Hebrew University of JerusalemIsrael
  2. 2.University of IllinoisUrbana

Personalised recommendations