Israel Journal of Mathematics

, Volume 8, Issue 1, pp 83–89 | Cite as

Remarks on duality and semigroups

  • N. J. Rothman


This paper discusses the duality theory for compact commutative idempotent semigroups and compact commutative inverse semigroups. The major difference from earlier work is the use of semicharacters which are measurable with respect to some measure on the semigroup. Duality theorems are proved using measures which give different dual spaces.


Inverse Semigroup Duality Theorem Maximum Multiplication Counting Measure Relative Topology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. W. Austin,Duality theorems for commutative semigroups, Trans. Amer. Math. Soc.,109 (1963), 245–256.MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    A. C. Baker and J. W. Baker,Duality of topological semigroups with involution, J. London Math. Soc.,44 (1969), 251–260.MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    J. W. Baker and N. J. Rothman,Separating points by semicharacters in topological semigroups, Proc. Amer. Math. Soc.,21 (1969), 235–239.MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    J. G. Bergman and N. J. Rothman,An L 1 algebra for algebraically irreducible semigroups, Studia Math.,33 (1969), 257–272.MATHMathSciNetGoogle Scholar
  5. 5.
    D. R. Brown and M. Friedberg,A new notion of semicharacters, Trans. Amer. Math. Soc.,141 (1969), 387–401.MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    A. H. Clifford and G. B. Preston,The algebraic theory of semigroups, Vol. 1 (Amer. Math. Soc., Providence, R.I.) 1961.Google Scholar
  7. 7.
    E. Hewitt and H. S. Zuckerman,The l 1-algebra of a commutative semigroup, Trans. Amer. Math. Soc.,83 (1956), 70–97.MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    E. Hewitt and H. S. Zuckerman,Structure theory for a class of convolution algebras, Pacific J. Math.,7 (1957), 913–941.MATHMathSciNetGoogle Scholar
  9. 9.
    L. J. Lardy,L 1(a,b)with order convolution, Studia Math.,27 (1966), 1–8.MATHMathSciNetGoogle Scholar
  10. 10.
    L. Loomis,Abstract Harmonic Analysis, (Van Nostrand Co., New York, N.Y.) 1953.MATHGoogle Scholar
  11. 11.
    K. A. Ross,The structure of certain measure algebras, Pacific J. Math.,11 (1961), 723–737.MATHMathSciNetGoogle Scholar
  12. 12.
    N. J. Rothman,Linearly quasi-ordered compact semigroups, Proc. Amer. Math. Soc.,13 (1962), 352–357.MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    N. J. Rothman,An L 1 algebra for certain locally compact topological semigroups, Pacific J. Math., 23 (1967), 143–151.MATHMathSciNetGoogle Scholar
  14. 14.
    N. J. Rothman,An L 1 algebra for linearly quasi-ordered compact semigroups, Pacific J. Math.,23 (1968), 579–588.MathSciNetGoogle Scholar
  15. 15.
    N. J. Rothman,Duality and linearly quasi-ordered compact semigroups, (submitted to J. London Math. Soc.).Google Scholar

Copyright information

© Hebrew University 1970

Authors and Affiliations

  • N. J. Rothman
    • 1
  1. 1.University of IllinoisUrbana

Personalised recommendations