Israel Journal of Mathematics

, Volume 142, Issue 1, pp 125–162 | Cite as

Obstructions to trivializing a knot



The recent proof by Bigelow and Krammer that the braid groups are linear opens the possibility of applications to the study of knots and links. It was proved by the first author and Menasco that any closed braid representative of the unknot can be systematically simplified to a round planar circle by a finite sequence of exchange moves and reducing moves. In this paper we establish connections between the faithfulness of the Krammer-Lawrence representation and the problem of recognizing when the conjugacy class of a closed braid admits an exchange move or a reducing move.


Intersection Pairing Conjugacy Class Homotopy Class Homology Class Braid Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    S. Bigelow,The Burau representation of B 5 is not faithful, Geometry and Topology3 (1999), 397–404.MATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    S. Bigelow,Braid groups are linear, Journal of the American Mathematical Society14 (2001), 471–486.MATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    J. S. Birman and W. Menasco,Studying links via closed braids IV: Closed braid representatives of split and composite links, Inventiones Mathematicae102 (1990), 115–139.CrossRefMathSciNetMATHGoogle Scholar
  4. [4]
    J. S. Birman and W. Menasco,Studying links via closed braids V: Closed braid representatives of the unlink, Transaction of the American Mathematical Society329 (1992), 585–606.MATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    J. S. Birman and W. Menasco,Studying links via closed braids VI: A nonfiniteness theorem, Pacific Journal of Mathematics156 (1992), 265–285.MATHMathSciNetGoogle Scholar
  6. [6]
    J. Birman,Braids, Links and Mapping Class Groups, Annals of Mathematics Studies 82, Princeton University Press, 1974.Google Scholar
  7. [7]
    J. Birman and M. Hirsch,A new algorithm for recognizing the unknot, Geometry and Topology2 (1998), 175–220.MATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    J. Birman, A. Lubotzky and J. McCarthy,Abelian and solvable subgroups of the mapping class group, Duke Mathematical Journal50 (1983), 1107–1120.MATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    J. Birman, D. Long and J. Moody,Finite-dimensional representations of Artin’s braid group, inThe Mathematical Legacy of Wilhelm Magnus, Contemporary Mathematics169 (1994), 123–132.Google Scholar
  10. [10]
    W. Burau,Uber Zopfgruppen und gleichsinning verdrillte Verkettunger, Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg11 (1936), 171–178.Google Scholar
  11. [11]
    A. Fathi, F. Laudenbach and V. Peonaru,Traveaux de Thurston sur les surfaces, Asterisque66–67 (1979).Google Scholar
  12. [12]
    J. Fehrenbach,Quelques aspects géométriques et dynamiques du mapping class group, PhD thesis, Université de Nice, January 1998.Google Scholar
  13. [13]
    T. Fiedler,A small state sum for knots, Topology32 (1993), 281–294.MATHCrossRefMathSciNetGoogle Scholar
  14. [14]
    B. J. Gassner,On braid groups, Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg25 (1961), 19–22.MathSciNetGoogle Scholar
  15. [15]
    N. Ivanov,Subgroups of the Teichmuller Modular Group, Translations of Mathematical Monographs115, American Mathematical Society, Providence, RI, 1992.Google Scholar
  16. [16]
    V. F. R. Jones,Hecke algebra representations of braid groups and link polynomials, Annals of Mathematics126 (1987), 335–388.CrossRefMathSciNetGoogle Scholar
  17. [17]
    D. Krammer,The braid group B 4 is linear, Inventiones Mathematicae142 (2000), 451–486.MATHCrossRefMathSciNetGoogle Scholar
  18. [18]
    D. Krammer,Braid groups are linear, Annals of Mathematics (2)155 (2002), 131–156.MATHMathSciNetGoogle Scholar
  19. [19]
    R. J. Lawrence,Homological representations of the Hecke algebra, Communications in Mathematical Physics135 (1990), 141–191.MATHCrossRefMathSciNetGoogle Scholar
  20. [20]
    D. Long,Constructing representations of braid groups, Communications in Mathematical Analysis and Geometry2 (1994), 217–238.MATHGoogle Scholar
  21. [21]
    D. Long and M. Patton,The Burau representation is not faithful for n ≥ 6, Topology32 (1993), 439–447.MATHCrossRefMathSciNetGoogle Scholar
  22. [22]
    J. McCarthy,A Tits alternative for subgroups of mapping class groups, Transactions of the American Mathematical Society291 (1985), 583–612.MATHCrossRefMathSciNetGoogle Scholar
  23. [23]
    J. McCool,On reducible braids, inWord Problems II (Conference on Decision Problems in Algebra, Oxford, 1976), Studies in Logic and the Foundations of Mathematics95, North-Holland, Amsterdam, 1980, pp. 261–295.Google Scholar
  24. [24]
    W. W. Menasco,On iterated torus knots and transversal knots, Geometry and Topology5 (2001), 651–682.MATHCrossRefMathSciNetGoogle Scholar
  25. [25]
    J. Moody,The faithfulness question for the Burau representation, Proceedings of the American Mathematical Society119 (1993), 671–679.MATHCrossRefMathSciNetGoogle Scholar
  26. [26]
    H. Morton,An irreducible 4-braid with unknotted closure, Mathematical Proceedings of the Cambridge Philosophical Society93 (1983), 259–261.MATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Hebrew University 2004

Authors and Affiliations

  1. 1.Department of MathematicsColumbia UniversityNew YorkUSA
  2. 2.Mathematics InstituteUniversity of WarwickCoventryEngland

Personalised recommendations