Kinetics and Catalysis

, Volume 41, Issue 2, pp 152–158 | Cite as

Relationship of the selectivity effect of aromatic solvents with their electron-donor ability and organic reactant structure in free radical chlorination

  • V. A. Aver’yanov
  • D. V. Vlasov
  • A. A. Svechnikova
  • A. I. Ermakov


The effect of several solvents on the selectivity of the free radical chlorination of 1,1-dichloroethane and 1-chloropropane is studied. The selective action of aromatic solvents on free radical chlorination is explained. This explanation implies that the process involves solvated chlorine atoms and their donor-acceptor complexes with aromatic molecules (ArH→Cl) as intermediates. Using the findings of this work and previous studies, the ratios of the rate constants for hydrogen-atom abstraction from different positions in chloroethane, 1,1-dichloroethane, 1-chloropropane, and 2-chloropropane by solvated chlorine atoms and ArH→-Cl complexes are determined. The differences in the activation energies of the competitive hydrogenatom abstractions from different positions in substrates by the ArH→Cl complexes and solvated chlorine radicals correlate with two HOMO energies of solvent and substrate molecules. The isokinetic relationship is found for all the systems under study (the isokinetic temperature, 523 K).


Homo Energy Aromatic Solvent Chloroethane Isokinetic Temperature Propyl Acetate 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Russell, G.A.,J. Am. Chem. Soc., 1958, vol. 80, no. 18, p. 4987.CrossRefGoogle Scholar
  2. 2.
    Poutsma, M.L.,Methods of Free Radical Chemistry, Huyser, E.S., Ed., New York: Marcel Derrer, 1969, vol. 1, p. 79.Google Scholar
  3. 3.
    Nonhebel, D.C. and Walton, J.C.,Free Radical Chemistry, Cambridge: Cambridge University Press, 1974.Google Scholar
  4. 4.
    Benson, S.W.,J. Am. Chem. Soc., 1993, vol. 115, no. 15, p. 6969.CrossRefGoogle Scholar
  5. 5.
    Atto, S.Y., Tedder, I.M., and Walton, I.C.,J. Chem. Soc., Perkin Trans. II, 1983, no. 5, p. 629.Google Scholar
  6. 6.
    Bunce, N.I., Ingold, K.U., Landers, I.P.,et al., J. Am. Chem. Soc., 1985, vol. 107, no. 19, p. 5464.CrossRefGoogle Scholar
  7. 7.
    Aver’yanov, V.A., Ruban, S.G., and Vlasov, D.V.,Kinet. Katal., 1992, vol. 33, no. 4, p. 788.Google Scholar
  8. 8.
    Aver’yanov, V.A., Sycheva, N.A., Markov, B.A., and Mamzurin, B.V.,Kinet. Katal., 1989, vol. 30, no. 5, p. 1033.Google Scholar
  9. 9.
    Raner, K.D., Lusztyk, J., and Ingold, K.U.,J. Am. Chem. Soc., 1989, no. 10, p. 3652.Google Scholar
  10. 10.
    Aver’yanov, V.A., Petrova, G.N., and Saiganova, L.K.,Khim. Prom-st., 1982, no. 12, p. 17.Google Scholar
  11. 11.
    Aver’yanov, V.A., Kirichenko, S.E., and Shvets, V.F.,Zh. Org. Khim., 1982, vol. 18, no. 6, p. 1257.Google Scholar
  12. 12.
    Aver’yanov, V.A., Semenov, A.O., and Golubev, V.E.,Puti povysheniya selektivnosti zhidkofaznogo khlorirovaniya organicheskikh soedinenii (Methods for Increasing the Selectivity of the Liquid-Phase Chlorination of Organic Substances), Moscow: NIITEKhIM, 1988, p. 64.Google Scholar
  13. 13.
    Aver’yanov, V.A., Zarytovskii, V.M., Shvets, V.F.,et al., Zh. Org. Khim., 1981, vol. 17, no. 1, p. 36.Google Scholar
  14. 14.
    Aver’yanov, V.A., Ruban, S.G., and Shvets, V.F.,Kinet. Katal., 1987, vol. 28, no. 3, p. 579.Google Scholar
  15. 15.
    Aver’yanov, V.A. and Ruban, S.G.,Zh. Org. Khim., 1987, vol. 23, no. 6, p. 1238.Google Scholar
  16. 16.
    Zarytovskii, V.M.,Cand. Sci. (Chem.) Dissertation, Moscow: Mendeleev Univ. of Chem. Tech., 1979.Google Scholar
  17. 17.
    Henre, W.J., Stewart, R.F., and Pople, J.A.,J. Chem. Phys., 1969, vol. 51, no. 6, p. 2657.CrossRefGoogle Scholar
  18. 18.
    Henre, W.J., Ditchfield, R.D., Stewart, R.F.,et al., J. Chem. Phys., 1970, vol. 52, no. 5, p. 2769.CrossRefGoogle Scholar
  19. 19.
    Dewar, M.J.S. and Thiel, W,J. Am. Chem. Soc., 1977, vol. 99, no. 15, p. 4899.CrossRefGoogle Scholar
  20. 20.
    Dewar, M.J.S., McKee, M.L., and Rzepa, H.S.,J. Am. Chem. Soc., 1978, vol. 100, no. 11, p. 3607.CrossRefGoogle Scholar
  21. 21.
    Hammond, G.,J. Am. Chem. Soc., 1955, vol. 77, no. 2, p. 334.CrossRefGoogle Scholar
  22. 22.
    Gur’yanova, E.N., Gol’dshtein, I.P., and Romm, I.P.,Donorno-aktseptornaya svyaz’ (Donor-Acceptor Bond), Moscow: Khimiya, 1973, p. 9.Google Scholar
  23. 23.
    Pal’m, V.A.,Osnovy kolichestvennoi teorii organicheskikh reaktsii (Foundations of the Quantitative Theory of Organic Reactions), Leningrad: Khimiya, 1977.Google Scholar
  24. 24.
    Swain, C.G., Unger, S.H., Rosenquis, N.R.,et al., J. Am. Chem. Soc., 1983, vol. 105, no. 3, p. 492.CrossRefGoogle Scholar
  25. 25.
    Tedder, Y.M.,Tetrahedron, 1982, vol. 38, no. 3, p. 313.CrossRefGoogle Scholar
  26. 26.
    Lebedev, N.N., Manakov, M.N., and Shvets, V.F.,Teoriya tekhnologicheskikh protsessov osnovnogo organicheskogo i neftekhimicheskogo sinteza (Theory of Basic Organic and Petrochemical Synthesis Technology), Moscow: Khimiya, 1975.Google Scholar
  27. 27.
    Dneprovskii, A.S. and Temnikova, T.I.,Teoreticheskie osnovy organicheskoi khimii (Theoretical Foundations of Organic Chemistry), Leningrad: Khimiya, 1991.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2000

Authors and Affiliations

  • V. A. Aver’yanov
    • 1
  • D. V. Vlasov
    • 2
  • A. A. Svechnikova
    • 1
  • A. I. Ermakov
    • 2
  1. 1.Tula State UniversityTulaRussia
  2. 2.Novomoskovsk Institute of Mendeleev University of Chemical EngineeringNovomoskovskRussia

Personalised recommendations