Annals of Biomedical Engineering

, Volume 24, Supplement 1, pp 37–47 | Cite as

Chaotic oscillations in microvessel arterial networks

  • Silvio Cavalcanti
  • Mauro Ursino
Research Articles


A mathematical model of a multibranched microvascular network was used to study the mechanisms underlying irregular oscillations (vasomotion) observed in arteriolar microvessels. The network's layout included three distinct terminal arteriolar branches originating from a common parent arteriole. The biomechanical model of the single microvessel was constructed to reproduce the time pattern of the passive and active (myogenic) response of arterioles in the hamster cheek pouch to a step-wise arterial pressure change. Simulation results indicate that, as a consequence of the myogenic reflex, each arteriole may behave as an autonomous oscillator, provided its intraluminal pressure lies within a specific range. In the simulated network, the interaction among the various oscillators gave rise to a complex behavior with many different oscillatory patterns. Analysis of model bifurcations, performed with respect to the arterial pressure level, indicated that modest changes in this parameter caused the network to shift between periodic, quasiperiodic, and chaotic behavior. When arterial pressure was changed from approximately 60–150 mm Hg, the model exhibited a classic route toward chaos, as in the Ruelle-Takens scenario. This work reveals that the nonlinear myogenic mechanism is able to produce the multitude of different oscillatory patterns observedin vivo in microvascular beds, and that irregular microvascular fluctuations may be regarded as a form of deterministic chaos.


Vasomotion Chaos Nonlinear dynamics Myogenic reflex microvascular networks 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Achakri, H., A. Rachev, N. Stergiopulos, and J. J. Meister. A theoretical investigation of low frequency diameter oscillations of muscular arteries.Ann. Biomed. Eng. 22:253–263, 1994.PubMedCrossRefGoogle Scholar
  2. 2.
    Arnold, V. I.Geometrical Methods in the Theory of Ordinary Differential Equations. New York: Springer-Verlag, 1993.Google Scholar
  3. 3.
    Bayliss, W. M. On the local reaction of the arterial wall to changes of the internal pressure.J. Physiol. Lond. 28:220–231, 1902.PubMedGoogle Scholar
  4. 4.
    Bergel, D. H. The dynamic elastic properties of the arterial wall.J. Physiol. 156:458–469, 1961.PubMedGoogle Scholar
  5. 5.
    Burrows, M. E., and P. C. Jonhson. Diameter, wall tension and flow in mesenteric arterioles during autoregulation.Am. J. Physiol. 241(10):H829-H837, 1981.PubMedGoogle Scholar
  6. 6.
    Casti, J. L.Alternate Realities: Mathematical Models of Nature and Man. New York: John Wiley & Sons, 1989, pp. 253–280.Google Scholar
  7. 7.
    Colantuoni, A., S. Bertuglia, and M. Intaglietta. Quantitation of rhythmic diameter changes in arterial microcirculation.Am. J. Physiol. 246(15):H508-H517, 1984.PubMedGoogle Scholar
  8. 8.
    Davis, M. J. Myogenic response gradient in an arteriolar network.Am. J. Physiol. 264(33):H2168-H2179, 1993.PubMedGoogle Scholar
  9. 9.
    Davis, M. J., P. N. Ferrer, and R. W. Gore. Vascular anatomy and hydrostatic pressure profile in the hamster cheek pouch.Am. J. Physiol. 250(19):H291-H303, 1986.PubMedGoogle Scholar
  10. 10.
    Davis, M. J., and P. J. Sikes. Myogenic responses of isolated arterioles: test for a rate-sensitive mechanism.Am. J. Physiol. 259(28):H1890-H1900, 1990.PubMedGoogle Scholar
  11. 11.
    Fung, Y. C.Biomechanics: Mechanical Properties of Living Tissues. New York, Berlin: Springer-Verlag, 1981, pp. 41–50.Google Scholar
  12. 12.
    Goldberger, A. L., D. R. Rigney, and B. J. West. Chaos and fractals in human physiology.Scientific American 262:43–49, 1990.CrossRefGoogle Scholar
  13. 13.
    Gonzales Fernandez, J. M., and B. Ermentrout On the origin and dynamics of the vasomotion of small arteries.Math. Biosci. 119(2):127–167, 1994.CrossRefGoogle Scholar
  14. 14.
    Grande, P. O., P. Borgstrom, and S. Mellander. On the nature of basal vascular tone in cat skeletal muscle and its dependence on transmural pressure stimuli.Acta Physiol. Scand. 107:365–376, 1979.PubMedCrossRefGoogle Scholar
  15. 15.
    Griffith, T. M., and D. H. Edwards. Mechanisms underlying chaotic vasomotion in isolated resistance arteries: roles of calcium and EDRF.Biorheology 30:333–347, 1993.PubMedGoogle Scholar
  16. 16.
    Intaglietta, M., and G. A. Breit. Chaos and microcirculatory control. In:Capillary Functions and White Cell Interaction, edited by H. Messmer, Prog. Appl. Microcirc. 18. Basel, Switzerland: S. Karger, 1991, pp. 22–32.Google Scholar
  17. 17.
    Johnson, P. C., and M. Intaglietta. Contributions of pressure and flow sensitivity to autoregulation in mesenteric arterioles.Am. J. Physiol. 231(6):1686–1698, 1976.PubMedGoogle Scholar
  18. 18.
    Meyer, J. U., and M. Intaglietta. Measurement of the dynamics of arteriolar diameter.Ann. Biomed. Eng. 14:109–117, 1986.PubMedCrossRefGoogle Scholar
  19. 19.
    Meyer, J. U., L. Lindbom, L., and M. Intaglietta. Coordinated diameter oscillations at arteriolar bifurcations in skeletal muscle.Am. J. Physiol. 253(22):H568-H573, 1987.PubMedGoogle Scholar
  20. 20.
    Nicoll, P. A., and R. L. Webb. Vascular patern and active vasomotion as determiners of flow trough minute vessels.Angiology 38:291–308, 1955.CrossRefGoogle Scholar
  21. 21.
    Osol, G., and W. Halpern. Myogenic properties of cerebral blood vessels from ormotensive rats.Am. J. Physiol. 249(18):H914-H921, 1985.PubMedGoogle Scholar
  22. 22.
    Oude Vrielink, H. H. E., D. W. Slaaf, G. J. Tangelder, and R. S. Reneman. Changes in vasomotion pattern and local arteriolar resistance during stepwise pressure reduction.Pflügers Arch. 414:571–578, 1989.PubMedCrossRefGoogle Scholar
  23. 23.
    Parker, T. S., and L. O. Chuas,Practical Numerical Algorithms for Chaotic Systems. New York: Springer-Verlag, 1989.Google Scholar
  24. 24.
    Perko, L.Differential Equations and Dynamical Systems. New York: Springer-Verlag, 1991.Google Scholar
  25. 25.
    Schechner, J. S. and I. M. Braverman. Synchronous vasomotion in the human cutaneous microvasculature provides evidence for central modulation.Microvasc. Res. 44:27–32, 1992.PubMedCrossRefGoogle Scholar
  26. 26.
    Schmidt, J. A., M. Intaglietta, and P. Borgstrom. Periodic hemodynamics in skeletal muscle during local arterial pressure reduction.J. Appl. Physiol. 73(3):1077–1083, 1992PubMedGoogle Scholar
  27. 27.
    Slaaf, D. W., G. J. Tangelder, H. C. Teirlinck, and R. S. Reneman. Arteriolar vasomotion and arterial pressure reduction in rabbit tenuissimus muscle.Microvasc. Res. 33:71–80, 1987.PubMedCrossRefGoogle Scholar
  28. 28.
    Sparrow, C.The Lorenz Equations: Biforcations, Chaos and Strange Attractors. Berlin, New York: Springer-Verlag, 1982, 27 pp.Google Scholar
  29. 29.
    Ursino, M., and G. Fabbri. Role of the myogenic mechanism in the genesis of microvascular oscillations (vasomotion): analysis with a mathematical model.Microvasc. Res. 43:156–177, 1992.PubMedCrossRefGoogle Scholar
  30. 30.
    Yasmashiro, S. M., D. W. Slaaf, R. S. Reneman, G. J. Tangelder, and J. B. Bassingthwaighte. Fractal analysis of vasomotion.Ann. NY Acad. Sci. 591:410–416, 1990.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 1995

Authors and Affiliations

  • Silvio Cavalcanti
    • 1
  • Mauro Ursino
    • 1
  1. 1.Department of Electronics, Computer Science and SystemsUniversity of BolognaBolognaItaly

Personalised recommendations