High Energy Chemistry

, Volume 34, Issue 4, pp 265–272 | Cite as

Evaluation of nonuniformity of polymeric membrane materials by positron annihilation technique

  • V. P. Shantarovich
  • I. B. Kevdina
  • Yu. P. Yampol’skii
Nuclear Chemistry


Positron annihilation lifetime distribution was experimentally studied in some polymers, including polymeric membrane materials, in an air and a nitrogen atmosphere. Basic attention was paid to the long-lived distribution component, i.e., to annihilation of orthopositronium (the positron-electron bound system). It was found that ambient oxygen affects the annihilation characteristics of positronium. Newly developed ideas on the mechanisms of formation, localization, and annihilation of positronium in the polymers lead to the conclusion that the distribution of free volumes of different size in the polymeric matrix is not uniform. The number concentration and size of free-volume holes and the size of microirregularities containing these holes were determined


PMMA Free Volume High Energy Chemistry Glassy Polymer Positronium Lifetime 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brandt, W., Berko, S., and Walker, W.W.,Phys. Rev., 1960, vol. 120, no. 4, p. 1289.CrossRefGoogle Scholar
  2. 2.
    Tao, S.J.,J. Chem. Phys., 1972, vol. 56, no. 1, p. 5499.CrossRefGoogle Scholar
  3. 3.
    Shantarovich, V.P. and Goldanskii, V.l.,Hyperfine Interact., 1998, vol. 116, no. 1, p. 67.CrossRefGoogle Scholar
  4. 4.
    Shantarovich, V.P., Azamatova, Z.K., Novikov, Yu.A., and Yampolskii, Yu.P.,Macromolecules, 1998, vol. 31, no. 2, p. 3963.CrossRefGoogle Scholar
  5. 5.
    Shantarovich, V.P., Novikov, Yu.A., Suptel, Z.K., Kevdina, I.B., Masuda, T., Khotimskii, V.S., and Yampolskii, Yu.P., Proc. 6th Int. Workshop on Positron and Positronium Chemistry, Tsukuba, 1999, Kobayashi, Y., Ed., (5C-1), p. 26; Radiat. Phys. Chem. (in press).Google Scholar
  6. 6.
    Shantarovich, V.P.,Yampol’skii,Yu.P., and Kevdina, I.B.,Khim. Vys. Energ., 1994, vol. 23, no. 1, p. 53 [High Energy Chem. (Engl. transl.), 1994, vol. 23, no. 1, p. 41].Google Scholar
  7. 7.
    Jean, Y.C., Chen, H.M., Zhang Renwu, Cao, H., Mal lon, P., J.-P. Yuan, Chia-Ming Huang, Suzuki, R., Ohdaira, T., and Nielsen, B., Proc. 6th Int. Workshop on Positron and Positronium Chemistry, Tsukuba, 1999, Kobayashi, Y, Ed., (1B-2), p. 26; Radiat. Phys. Chem. (in press).Google Scholar
  8. 8.
    Venkateswaran, K., Cheng, K.L., and Jean, Y.C.,J. Phys. Chem., 1984, vol. 88, no. 12, p. 2465.CrossRefGoogle Scholar
  9. 9.
    Tao, S.J.,J. Chem. Phys., 1972, vol. 56, no. 11, p. 5499.CrossRefGoogle Scholar
  10. 10.
    Eldrup, M., Lightbody, D., and Sherwood, J.N.,Chem. Phys., 1981, vol. 63, no. 2, p. 51.CrossRefGoogle Scholar
  11. 11.
    Shantarovich, V.P.,J. Radioanal. Nucl. Chem. Articles, 1996, vol. 210, no. 2, p. 357.CrossRefGoogle Scholar
  12. 12.
    Gregory, R.B.,J. Appl. Phys., 1991, vol. 70, no. 9, p. 4665.CrossRefGoogle Scholar
  13. 13.
    Consolati, G., Genco, I., Pegoraro, M., and Zanderi ghi, L.,J. Polym. Sci., Part B: Polym. Phys, 1996, vol. 34, no. 3, p. 357.CrossRefGoogle Scholar
  14. 14.
    Gol’danskii, A.V., Onishchuk, V.A., Shantarovich, V.P., Volkov, V.V., and Yampol’skii, Yu.P,Khim. Fiz., 1988, vol. 7, no. 5, p. 616.Google Scholar
  15. 15.
    Goldanskii, V.l., Mokrushin, A.D., Tatur, A.O., and Shantarovich, V.P,Appl. Phys., 1975, vol. 5, p. 379.CrossRefGoogle Scholar
  16. 16.
    Dlubek, G. and Eichler, S.,Phys. Status Solidi A, 1998, vol. 168, p. 333.CrossRefGoogle Scholar
  17. 17.
    Goldanskii, V.l. and Shantarovich, V.P.,Appl. Phys., 1974, vol. 3, p. 335.CrossRefGoogle Scholar
  18. 18.
    Mogensen, O.E.,Positron Annihilation in Chemistry, Goldanskii, V.I, Schaffer, F.P., and Toennis, J.P., Eds., Berlin: Springer, 1995, p. 155.Google Scholar
  19. 19.
    Masuda, T., Iguchi, Y, Tang, B., and Higashimura, T.,Polymer, 1988, vol. 29, no. 11, p. 2041.CrossRefGoogle Scholar
  20. 20.
    Hirata, K., Kobayashi, Y, and Ujihira, Y,J. Chem. Soc, Faraday Trans., 1996, vol. 92, no. 6, p. 985.CrossRefGoogle Scholar
  21. 21.
    Dlubek, G., Stejny, J., and Alam, M.A.,Macromolecules, 1998, vol. 31, no. 14, p. 4574.CrossRefGoogle Scholar
  22. 22.
    Fujii, Y, Fusaoka, Y, and Aoyama, M,Proc. 6th Int. Symp. on Synthetic Membranes in Science and Industry, Univ. of Tuebingen, Germany, 1989, p. 71.Google Scholar
  23. 23.
    Rigby, D. and Roe, R.J.,Macromolecules, 1990, vol. 23, no. 26, p. 5312.CrossRefGoogle Scholar
  24. 24.
    Shantarovich, V.P., Novikov, Yu.A., Suptel, Z.K., Ole inik, E.F., and Boyce, M.C.,Acta Phys. Pol. A, 1999, vol. 95, no. 4, p. 659.Google Scholar

Copyright information

© Maik “Nauka/Interperiodica” 2000

Authors and Affiliations

  • V. P. Shantarovich
    • 1
  • I. B. Kevdina
    • 1
  • Yu. P. Yampol’skii
    • 2
  1. 1.Semenov Institute of Chemical PhysicsRussian Academy of SciencesMoscowRussia
  2. 2.Topchiev Institute of Petrochemical SynthesisRussian Academy of SciencesMoscowRussia

Personalised recommendations