Journal of Statistical Physics

, Volume 89, Issue 1–2, pp 453–468 | Cite as

Vibrations of simple fractal-based models

  • John C. Kimball
  • Harry L. Frisch


Dynamical systems with fractal geometry can be constructed in a variety of ways: We illustrate this variety with examples based on the Cantor set, the Sierpinski gasket, and on lattices of these fractal-based structures. Depending on the physical parameters, the models can exhibit both discrete and continuous spectra.

Key Words

Fractal lattice vibration Cantor set Sierpinski gasket 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Y. Gefen, B. B. Mandelbrot, and A. Aharony,Phys. Rev. Lett. 45:855 (1980).CrossRefADSMathSciNetGoogle Scholar
  2. 2.
    T. Nakayama, K. Yakubo, and R. L. Orbach,Rev. Mod. Phys. 66:381 (1994).CrossRefADSGoogle Scholar
  3. 3.
    M. Kohmoto, L. P. Kadanoff, and C. Tang,Phys. Rev. Lett. 50:1870 (1983).CrossRefADSMathSciNetGoogle Scholar
  4. 4.
    S. Ostlund, R. Pandit, D. Rand, H. J. Schellnhuber, and E. D. Siggia,Phys. Rev. Lett. 50:1873(1983).CrossRefADSMathSciNetGoogle Scholar
  5. 5.
    B. Sutherland and M. Kohmoto,Phys. Rev. B36:5877 (1987).ADSMathSciNetGoogle Scholar
  6. 6.
    M. Moulopoulos and S. Roch,Phys. Rev. B53:212 (1996).ADSGoogle Scholar
  7. 7.
    G. Gumbs, G. S. Dubey, A. Salmon, B. S. Mahmoud, and D. Huang,Phys. Rev. B52:210 (1995).ADSGoogle Scholar
  8. 8.
    H. Hiramoto and M. Kohmoto,Int. J. Mod. Phys. B6:281 (1992).ADSMathSciNetGoogle Scholar
  9. 9.
    Y. Hu, D.-C. Tian, and L. Wang,Phys. Lett. A207:293 (1995).Google Scholar
  10. 10.
    F. Piechon,Phys. Rev. Lett. 76: 4371 (1996).CrossRefADSGoogle Scholar
  11. 11.
    A. Hof, O. Knill, and B. Simon,Commun. Math. Phys. 174:149 (1995).MATHCrossRefADSMathSciNetGoogle Scholar
  12. 12.
    W. P. Keirstead, H. A. Ceccato, and B. A. Huberman,J. Stat. Phys. 53:733 (1988).CrossRefGoogle Scholar
  13. 13.
    P. Kappertz, R. F. S. Andrade, and H. J. Schellnhuber,Phys. Rev. B49:14711 (1994).ADSGoogle Scholar
  14. 14.
    F. Cracium et al.,Phys Rev. Lett. 68:1444 (1992);Phys. Rev. B49:15067 (1994).Google Scholar
  15. 15.
    R. Rammal,Journal de Physique 45:191 (1984).CrossRefMathSciNetGoogle Scholar
  16. 16.
    E. Domany, S. Alexander, D. Benisimon, and L. P. Kadanoff,Phys. Rev. B28:3110 (1983).ADSGoogle Scholar
  17. 17.
    B. W. Southern and A. R. Douchout,Phys. Rev. Lett. 55:966 (1985).CrossRefADSGoogle Scholar
  18. 18.
    K. Yakubo,Phys. Rev. B42:1078 (1990).ADSGoogle Scholar
  19. 19.
    X. R. Wang,Phys. Rev. B51:9310 (1995).ADSGoogle Scholar
  20. 20.
    D. J. Bergman and Y. Kantor,Phys. Rev. Lett. 53:511 (1984).CrossRefADSMathSciNetGoogle Scholar
  21. 21.
    P. J.-M. Monceau and J.-C. S. Levy,Phys. Rev. B49:1026 (1994).ADSGoogle Scholar
  22. 22.
    W. A. Schwalm, C. C. Reese, C. J. Wagner, and M. K. Schwalm,Phys. Rev. B49:15650 (1994).ADSGoogle Scholar
  23. 23.
    C. S. Jayanthi and S. Y. Wu,Phys. Rev. B50:897 (1994).ADSGoogle Scholar
  24. 24.
    J. Q. You, C.-H. Lam, F. Nori, and L. M. Sander,Phys. Rev. E48: 4183 (1993).ADSGoogle Scholar
  25. 25.
    F. S. de Menezes and A. C. N. de Magalhaes,Phys. Rev. B46:11642 (1992); see also the extensive references in this paper.ADSGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • John C. Kimball
    • 1
  • Harry L. Frisch
    • 2
  1. 1.Department of PhysicsUniversity at AlbanyAlbany
  2. 2.Department of ChemistryUniversity at AlbanyAlbany

Personalised recommendations