Advertisement

Journal of Statistical Physics

, Volume 89, Issue 1–2, pp 403–409 | Cite as

A particle method with adjustable transport properties—the generalized consistent Boltzmann algorithm

  • Alejandro L. Garcia
  • Francis J. Alexander
  • Berni J. Alder
Articles

Abstract

The consistent Boltzmann algorithm (CBA) for dense, hard-sphere gases is generalized to obtain the van der Waals equation of state and the corresponding exact viscosity at all densities except at the highest temperatures. A general scheme for adjusting any transport coefficients to higher values is presented.

Key Words

Direct simulation Monte Carlo van der Waals equation of state Enskog theory hard-sphere gas kinetic theory molecular dynamics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. A. Bird,Molecular Gas Dynamics and the Direct Simulation of Gas Flows (Clarendon, Oxford, 1994).Google Scholar
  2. 2.
    A. L. Garcia,Numerical Methods for Physics, Chapt. 10 (Prentice Hall, Englewood Cliffs NJ, 1994).Google Scholar
  3. 3.
    W. Wagner,J. Stat. Phys. 66:1011 (1992).MATHCrossRefADSGoogle Scholar
  4. 4.
    F. J. Alexander, A. L. Garcia, and B. J. Alder,Phys. Rev. Lett. 74:5212 (1996).CrossRefADSGoogle Scholar
  5. 5.
    F. J. Alexander, A. L. Garcia, and B. J. Alder, in 25Years of Non Equilibrium Statistical Mechanics edited by J. Brey, J. Marro, M. Rubi, and M. San Miguel (Springer-Verlag, Berlin, 1995).Google Scholar
  6. 6.
    P. Resibois and M. De Leener,Classical Kinetic Theory of Fluids, (John Wiley and Sons, New York, 1977).Google Scholar
  7. 7.
    J. M. Montanero and A. Santos,Phys. Rev. E 54:438 (1996).CrossRefADSGoogle Scholar
  8. 8.
    F. J. Alexander, A. L. Garcia, and B. J. Alder,Physica A 240:196 (1997).CrossRefADSGoogle Scholar
  9. 9.
    M. Kac, G. E. Uhlenbeck, and P. C. Hemmer,J. Math. Phys. 4:216 (1963); M. Kac, G. E. Uhlenbeck, and P. C. Hemmer,J. Math. Phys. 4:229 (1963); J. L. Lebowitz and J. K. Percus,J. Math. Phys. 4:248 (1963).CrossRefADSMathSciNetGoogle Scholar
  10. 10.
    J. J. Erpenbeck and W. W. WoodJ. Stat. Phys. 35:321 (1984); J. J. Erpenbeck and W. W. WoodJ. Stat. Phys. 40:787 (1985).CrossRefGoogle Scholar
  11. 11.
    T. E. Wainwright,J. Chem. Phys. 40:2932 (1964).CrossRefADSGoogle Scholar
  12. 12.
    B. J. Alder, D. M. Gass, and T. E. Wainwright,J. Chem. Phys. 53:3813 (1970).CrossRefADSGoogle Scholar
  13. 13.
    J. J. Erpenbeck and W. W. Wood,Phys. Rev. A 43:4254 (1991).CrossRefADSGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • Alejandro L. Garcia
    • 1
    • 2
  • Francis J. Alexander
    • 3
  • Berni J. Alder
    • 4
  1. 1.Center for Computational Sciences and EngineeringLawrence Berkeley National LaboratoryBerkeley
  2. 2.Physics DepartmentSan Jose State UniversitySan Jose
  3. 3.Center for Computational ScienceBoston UniversityBoston
  4. 4.Lawrence Livermore National LaboratoryLivermore

Personalised recommendations