A biochemical approach to potentiate the activity ofBacillus thuringiensis against corn borers

  • M. Hafez
  • H. S. Salama
  • A. El-Moursy
  • A. Abdel Rahman


Due to the fact that the persistence ofBacillus thuringiensis (B.t.) is very short in the field as affected by exposure to ultraviolet radiation, some biochemical approaches have been adopted in an attempt to increase potentiation of the pathogen against the two lepidopterous corn borers,Chilo agamemnon andOstrinia nubilalis. These approaches were based on the incorporation of some selected non-toxic chemical compounds with different modes of action with the endotoxin ofB.t. fed to the larvae and thus resulting in its potentiation.

Among the compounds tested, some representatives of inorganic salts, organic acids, protein and lipid solubilizing agents, amino acids and amides showed an obvious potentiation to the endotoxin activity against the target insects. Inorganic salts, such as, calcium oxide, calcium carbonate, zinc sulphate and potassium carbonate at 0.1% potentiated the activity of the product Dipel 2X (B.t. var.kurstaki) against the two tested species in varying degrees. With regard to protein solubilzing agents, urea, sodium thioglycollate and EDTA enhanced the potency ofB.t. againstO. nubilalis with a fold increase of 1.4–2.3. The lipid emulsifying agent Tween 80 (0.5%), caused 1.3 fold increase in the potency ofB.t. With respect toC. agamemnon, sodium thioglycollate and EDTA (0.1%) were effective in potentiating the activity ofB.t. with fold increase of 3.1 and 1.2, respectively, while urea caused a decrease in the potency ofB.t as compared with the control. The lipid emulsifying agent Tween 80 (0.5%) caused 1.3 fold increase in the potency ofB.t. The potentiating effect of aromatic compounds is not obvious with respect to the tested insect species. With amino acids and amides, it appears that some of the tested compounds enhanced the potency ofB.t. against the tested insect species but in varying degrees. The mode of action of the tested compounds has been discussed in the light of the results obtained.


Bacillus Thuringiensis Potassium Carbonate Calcium Oxide Zinc Sulphate Biochemical Approach 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abbott, W. S., 1925: A method of computing effectiveness of insecticides. J. Econ. Entomol.18, 265–267.Google Scholar
  2. Andrews, G. L.;Harris, F. A.;Sikorowski, P. P.;McLaughlin, R. E., 1974: Evaluation ofHeliothis nuclear polyhedrosis virus in a cotton seed oil bait for control ofHeliothis virescens andHeliothis zea on cotton. J. Econ. Entomol.68, 87–90.Google Scholar
  3. Angus, T. A.;Luthy, P., 1971: Formulations of microbial insecticides. In: Microbial control of insects and mites. Ed. byH. D. Burges andN. W. Hussey. London: Acad. Press, Inc., 623–638.Google Scholar
  4. Barret, F. M.;Friend, W. G., 1970: Uric acid synthesis inRhodnius prolixus. J. Inverteb. Physiol.16, 121–129.CrossRefGoogle Scholar
  5. Burges, H. D., 1977: Control, of wax mothGalleria mellonella on beecomb by H-serotypeBacillus thuringiensis and the effect of chemical additives. Apidologie8, 155–168.CrossRefGoogle Scholar
  6. Charles, C. D.;Wallis, R., 1964: Enhancement of the action ofBacillus thuringiensis var.thuringiensis onPorthesia dispar (L.) in laboratory tests. J. Insect Pathol.6, 423–429.Google Scholar
  7. Chestuknina, G. G.;Kostina, L. I.;Mikhailova, A. L.;Tynrin, S. A.;Klepikova, F. S.;Steranova, V. M., 1982: The main features ofBacillus thuringiensis δ-endotoxin structure. Arch. Microbiol.132, 156–162.Google Scholar
  8. Dixon, W.;Webb, E. C., 1964: Enzymes. New York: Acad. Press. 67–70.Google Scholar
  9. Dulmage, H. T.;Boening, O.;Rehnborg, G.;Hansen, G., 1971: A proposed standardized bioassay for formulations ofBacillus thuringiensis based on the international unit. J. Invertebr. Pathol.18, 240–245.PubMedCrossRefGoogle Scholar
  10. El-Nockrashy, A. S.;Salama, H. S.;Taha, F., 1986: Influence of bait formulations on the effectiveness ofBacillus thuringiensis againstSpodoptera littoralis (Boisd). Z. ang. Ent.101, 381–389.Google Scholar
  11. Endo, Y.;Nishitsutsuji-Uwo, J., 1980: Mode of action ofBacillus thuringiensis−δ-endotoxins. Histopathological changes in the sikworm midgut J. Invertebr. Pathol.36, 90–105.CrossRefGoogle Scholar
  12. Heimpel, A. M.;Angus, T. A., 1959: The site of action of crystalliferous bacteria in lepidoptera larvae. J. Insect Pathol.1, 152–170.Google Scholar
  13. Ingnoffo, C. M.;Garcia, C.;Gasparotto, V. A., 1968: Sensitivity of larvae of the cabbage lopper,Trichoplusia ni, toBacillus thuringiensis. J. of Invertebr. Pathol.11 (1), 97–103.CrossRefGoogle Scholar
  14. Ignoffo, C. M.;Hosteter, D. L.;Smith, D. B., 1976: Gustatory stimulant, sunlight protectant, evaporation retardant: Three characteristics of a microbial insecticidal adjuvant. J. Econ. Entomol.69 (2), 207–210.Google Scholar
  15. McLaughlin, R. E.;Andrews, G.;Bell, M. R., 1971: Field tests for control ofHeliothis spp. with a nuclear polyhedrosis virus included in a bollweeil bait. J. Invertebr. Pathol.18, 304–305.PubMedCrossRefGoogle Scholar
  16. Montoya, E. L.;Ignoffo, C. M.;McGarr, R. L., 1966: A leading stimulant to increase effectiveness of and a field test with a nuclear-polyhedrosis virus ofHeliothis spp. J. Invertebr. Pathol.8, 320–324.CrossRefGoogle Scholar
  17. Nickerson, K. W., 1980: Structure and function of theBacillus thuringiensis protein crystal. Biotechn. and Bioengin.22, 1306–1333.Google Scholar
  18. Patti, J. M.;Carver, G. R., 1974:Bacillus thuringiensis investigations for the control ofHeliothis spp. on cotton. J. Econ. Entomol.67, 415–418.PubMedGoogle Scholar
  19. Rafaeli, A.;Applebaum, S. M., 1981: The influence of canavanine and related compounds on the water balance system of locusts. Insect Physiol.28, 201–204.CrossRefGoogle Scholar
  20. Rogoff, M. H.;Yousten, A. A., 1969:Bacillus thuringiensis. Microbiological considerations. Ann. Rev. Microbiol.23, 357–386.CrossRefGoogle Scholar
  21. Salama, H. A.;Sharaby, A.;Ragaei, 1983: Chemical changes in the heamolymph ofSpodoptera littoralis as affected byBacillus thuringiensis. Entomophaga,28 (4), 331–337.CrossRefGoogle Scholar
  22. Salama, H. S.;Foda, M. S.;Sharaby, A., 1984: Novel biochemical avenues for enhancingBacillus thuringiensis endotoxin potency againstSpodoptera littoralis. Entomophaga29, 171–178.CrossRefGoogle Scholar
  23. Salama, H. S.;Foda, M. S.;Sharaby, A. 1985: Potential of some chemicals to increase the effectivenessBacillus thuringiensis Berlin. againstSpodoptera littoralis. (Boisd.). Z. ang. Ent.100, 425–433.Google Scholar
  24. Salama, H. S.;Foda, M. S.;Sharaby, A., 1986: Possible extension of the activity spectrum ofBacillus thuringiensis strains through chemical additives. J. ang. Ent.101, 304–313.CrossRefGoogle Scholar
  25. Salama, H. S.;Foda, M. S.;Sharaby, A., 1986: Potentiation ofBacillus thuringiensis endotoxin against the greasy cut wormAgrotis ypsilon. Z. ang. Ent.108, 372–380.Google Scholar
  26. Smirnoff, W. A., 1974: The symptoms of infection byBacillus thuringiensis and chitinase formulation in larvae ofChoristoneura fumiferana. J. Invertebrate. Pathol.23, 397–399.CrossRefGoogle Scholar
  27. Wigglesworth, V. B., 1972: The principles of insect physiology. London: English Language Book Society, Chapman and Hall.Google Scholar

Copyright information

© Blackwell Wissenschafts-Verlag 1998

Authors and Affiliations

  • M. Hafez
    • 1
  • H. S. Salama
    • 2
  • A. El-Moursy
    • 1
  • A. Abdel Rahman
    • 2
  1. 1.Faculty of ScienceCairo UniversityCairo
  2. 2.National Research CentreCairoEgypt

Personalised recommendations