Studia Logica

, Volume 48, Issue 2, pp 179–192 | Cite as

TuringL-machines and recursive computability forL-maps

  • Giangiacomo Gerla


We propose the notion of partial recursiveness and strong partial recursiveness for fuzzy maps. We prove that a fuzzy mapf is partial recursive if and only if it is computable by a Turing fuzzy machine and thatf is strongly partial recursive and deterministic if and only if it is computable via a deterministic Turing fuzzy machine. This gives a simple and manageable tool to investigate about the properties of the fuzzy machines.


Turing Machine Recursive Function Fuzzy Algorithm Nondeterministic Turing Machine Classical Subset 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    L. Biacino andG. Gerla,Recursively enumerable L-sets,Zeitschrift für Mathematische Logik und Grundlagen der Mathematik 33 (1987), pp. 107–113.CrossRefGoogle Scholar
  2. [2]
    B. Clares Rodriguez,Una introduccion a la W-calculabilidad: Operaciones basicas,Sochastica 2 (1983), pp. 111–135.Google Scholar
  3. [3]
    G. Gerla,Sharpness relation and decidible fuzzy sets,IEE Trans; Automat. Contr.,AC-27 (1982), p. 1113.CrossRefGoogle Scholar
  4. [4]
    G. Gerla,Pavelka's fuzzy logic and free L-subsemigroups,Zeitschrift für Mathematische Logik und Grundlagen der Mathematik 31 (1985), pp. 123–129.CrossRefGoogle Scholar
  5. [5]
    G. Gerla L-Grammars and Recursively Enumerable L-Subsets, Pubbl. Dip. Mat. ed Appl. “R. Caccioppoli” 13 (1986).Google Scholar
  6. [6]
    G. Gerla,Decidability, partial decidability and sharpness relation for L-subsets,Studia Logica 46 (1987), pp. 227–238.CrossRefGoogle Scholar
  7. [7]
    J. A. Goguen,L-fuzzy sets,Journal of Mathematical Analysis and Applications 18 (1967), pp. 145–171.CrossRefGoogle Scholar
  8. [8]
    L. Harkleroad,Fuzzy recursion, RET's and isols,Zeitschrift für Mathematische Logik und Grundlagen der Mathematik 30 (1984), pp. 425–436.CrossRefGoogle Scholar
  9. [9]
    C. V. Negoita andD. A. Ralescu,Applications of Fuzzy Sets to Systems Analysis, Birkhauser Verlag, Basel (1975).Google Scholar
  10. [10]
    J. Pavelka,On fuzzy logic Izmany valued rules of inference,Zeitschrift für Mathematische Logik und Grundlagen der Mathematik 2 (1979), pp. 119–134.CrossRefGoogle Scholar
  11. [11]
    H. Rogers,Theory of Recursive Functions and Effective Computability, McGraw-Hill, New York, 1967.Google Scholar
  12. [12]
    E. S. Santos,Fuzzy algorithms,Information and Control 17 (1970), pp. 326–339.CrossRefGoogle Scholar
  13. [13]
    E. S. Santos,Fuzzy and probabilistic programs,Information Sciences 10 (1976), pp. 331–335.Google Scholar
  14. [14]
    L. A. Zadeh,Fuzzy sets,Information and Control 12 (1965), pp. 338–353.CrossRefGoogle Scholar
  15. [15]
    L. A. Zadeh,Fuzzy algorithms,Information and Control 15 (1968), pp. 94–102.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • Giangiacomo Gerla
    • 1
  1. 1.Dipartimento di Mathematica ed ApplicazioniUniversita Degli Studi di NapoliNapoliItaly

Personalised recommendations