Studia Logica

, Volume 48, Issue 2, pp 141–155 | Cite as

An algebraic approach to intuitionistic modal logics in connection with intermediate predicate logics

  • Nobu-Yuki Suzuki


Modal counterparts of intermediate predicate logics will be studied by means of algebraic devise. Our main tool will be a construction of algebraic semantics for modal logics from algebraic frames for predicate logics. Uncountably many examples of modal counterparts of intermediate predicate logics will be given.


Modal Logic Algebraic Approach Predicate Logic Normal Extension Modal Formula 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    R. A. Bull,MIPC as the formalization of an intuitionist concept of modality,Journal of Symbolic Logic 31(1966), pp. 609–616.CrossRefGoogle Scholar
  2. [2]
    S. Burris andH. P. Sankappanavar,A Course in Universal Algebra, Graduate Texts in Mathematics 78, Springer-Verlag, New York-Heidelberg-Berlin, 1981.Google Scholar
  3. [3]
    K. Došen,Models for stronger normal intuitionistic modal logics,Studia Logica 44(1985), pp. 50–61.Google Scholar
  4. [4]
    J. M. Font,Implication and deducation in some intuitionistic modal logics,Reports on Mathematical Logic 17(1984), pp. 27–38.Google Scholar
  5. [5]
    J. M. Font,Modality and possibility in some intuitionistic modal logics,Notre Dame Journal of Formal Logic 27(1986), pp. 533–546.CrossRefGoogle Scholar
  6. [6]
    L. Löwenheim,Über Möglichkeiten im Relativkalkül,Mathematische Annalen 76(1915), pp. 445–470.CrossRefGoogle Scholar
  7. [7]
    H. Ono,A study of intermediate predicate logics,Publications of the Research Institute for Mathematical Sciences, Kyoto University 8(1972), pp. 619–649.Google Scholar
  8. [8]
    H. Ono,On some intuitionistic modal logics,Publications of the Research Institute for Mathematical Sciences, Kyoto University 13(1977), pp. 687–722.Google Scholar
  9. [9]
    H. Ono,Some problems in intermediate predicate logics,Reports on Mathematical Logic 21(1987), pp. 55–67.Google Scholar
  10. [10]
    H. Ono andN.-Y. Suzuki,Relations between intuitionistic modal logics and intermediate predicate logics, to appear inReports on Mathematical Logic 22(1989).Google Scholar
  11. [11]
    H. Rasiowa,An Algebraic Approach to Non-Classical Logics, Studies in Logic and the Foundations of Mathematics, 78, North-Holland Publishing Company, Amsterdam-London, 1974.Google Scholar
  12. [12]
    M. Wajsberg,Ein erweiterter Klassenkalkül,Monatshefte für Mathematik und Physik 40(1933), pp. 113–126. English translation:An extended class calculus, in M. Wajsberg,Logical Works, edited by S. J. Surma, Ossolineum 1977, pp. 50–61.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • Nobu-Yuki Suzuki
    • 1
  1. 1.Mathematical InstituteTôhoku UniversitySendaiJapan

Personalised recommendations