Skip to main content
Log in

Growth of buckytubes on the anode at are discharge

  • Original Contributions
  • Published:
Zeitschrift für Physik B Condensed Matter

Abstract

It is shown that for an arc discharge between carbon electrodes in an inert gas atmosphere the temperatures at the electrode surfaces play a key role in determining the structure and the electrode on which a deposit can grow. The heat balance equations determine that the anode temperature is higher due to the energy carried by the electrons. This leads to anode sublimation and deposition on the cathode. It is shown that by cathode heating, by anode cooling or by a combination of these, a deposit may be obtained on the anode due to cathode erosion. The deposit grown by the “inverse” method is compared with a deposit obtained on the cathode under the same conditions but at reverse supply voltage polarity. The material from both deposits, studied by TEM, shows that there are graphite crystals within the anode deposit, and that the carbon forms within have a relatively small number of structural defects while the buckytubes are greater in length than those within the cathode deposit. The reasons for these differences are discussed. In the “inverse” method, the constant decrease in cooling of the anode surface leads to an equalization of the anode and cathode temperatures. This creates conditions that favor buckytube growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Iijima, S.: Nature354, 56 (1991)

    Article  CAS  Google Scholar 

  2. Terrones, H., Mackay, A.L.: Carbon30, 1251 (1992)

    Article  CAS  Google Scholar 

  3. Ebbesen, T.W., Ajayan, P.M.: Nature358, 220 (1992)

    Article  CAS  Google Scholar 

  4. Dravid, V.P., Lin, X., Wang, Y., Wang, X.K., Yee, A., Ketterson, J.B., Chang, H.: Science259, 1601 (1993)

    Article  CAS  Google Scholar 

  5. Ajayan, P.M., Iijima, S.: Nature358, 23 (1992)

    Article  Google Scholar 

  6. Beguin, F., Clinard, C., Conard, J., Jean-Noel Rouzard,: Extended Abstracts of the 21st Biennial Conference on Carbon. June 13–18, Buffalo, N.Y., 233 (1993), published by the American Carbon Society

  7. Jose-Yacaman, M., Mild, M., Reyes-Gasga, J.: The First International Interdisciplinary Colloquium on the Science Technology of the Fullerenes, June 27–July 1, Santa Barbara, CA, 248 (1993), published by Elsevier.

  8. Granowski W.L., Der Elektrische Strom im Gas Berlin: Akademie Verlag 1995

    Google Scholar 

  9. Koprinarov, N., Marinov, M., Pchelarov, G., Konstantinova, M., Stefanov, R.: to be published in the J. Phys. Chem., 1995.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koprinarov, N., Marinov, M., Pchelarov, G. et al. Growth of buckytubes on the anode at are discharge. Z. Phys. B - Condensed Matter 99, 353–356 (1995). https://doi.org/10.1007/BF02769953

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02769953

Keywords

Navigation