Zeitschrift für Physik B Condensed Matter

, Volume 99, Issue 1, pp 261–267 | Cite as

Carrier transfer in inhomogeneous media

  • Vladislav Čápek
Original Contributions


From four non-stochastic rigorous theories leading to a set of equations for site-diagonal as well as site off-diagonal elements of the electron (carrier) density matrix (Time-Convolution Generalized Master Equation, Mori theory, Time-Convolutionless Generalized Master Equation and Tokuyama-Mori), the first two (time nonlocal) approaches were recently found to be disabled in the second order in the carrier-bath coupling. On the other hand, the latter two (time local) theories are argued here to lead, in the above order and any electronic system with a site-local coupling to bath, to completely identical and physically fully acceptable equations. The theory is applied to a periodic chain and asymmetric dimer. It is shown that, irrespective of problems with introducing\(\bar \gamma _{mn} \) or γ mn (m≠n) Haken-Strobl-Reineker parameters, the usual transition from the non-activated to activated (Arrhenius-type) ‘up-and-down’ asymmetric Marcus long-time reaction kinetics is obtained. The usual long-time markovian description of the population kinetics assumed in the standard theory is, however, found to be unjustified.


05.60.+w 66.90.+r 72.90.+y 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Primas, H.: Helv. Phys. Acta34, 36 (1961)MathSciNetGoogle Scholar
  2. 2.
    Haken, H., Strobl, G.: In: The Triplet State. Proc. Int. Symp., Amer. Univ. Beirut, Lebanon, 1967. Zahlan, A. B. (ed.). Cambridge: University Press 1967Google Scholar
  3. 3.
    Reineker, P.: In: Exciton Dynamics in Molecular Crystals and Aggregates. Springer Tracts in Modern Physics, Vol. 94. Höhler, G. (ed.), p. 111, Berlin, Heidelberg, New York: Springer (1982)CrossRefGoogle Scholar
  4. 4.
    Čápek, V.: Z. Phys. B60, 101 (1985)CrossRefGoogle Scholar
  5. 5.
    Čápek, V., Szöcs, V.: Phys. Status Solidi (b)131, 667 (1985)CrossRefGoogle Scholar
  6. 6.
    Lindenberg, K., West, B. J.: The Nonequilibrium Statistical Mechanics of Open and Closed Systems. New York: VCH 1990MATHGoogle Scholar
  7. 7.
    Čápek, V.: Physica A203, 495 (1994)CrossRefADSGoogle Scholar
  8. 8.
    Fick, E., Sauermann, G.: The Quantum Statistics of Dynamic Processes. Springer Series in Solid-State Sciences Vol. 86. Fulde, P. (ed.). Berlin, Heidelberg, New York: Springer 1990Google Scholar
  9. 9.
    Čápek, V.: Z. Phys. B92, 523 (1993)CrossRefGoogle Scholar
  10. 10.
    Čápek, V.: Physica A203, 520 (1994)CrossRefADSGoogle Scholar
  11. 11.
    Fuliski, A.: Phys. Lett. A25, 13 (1967)CrossRefADSGoogle Scholar
  12. 12.
    FuliXXXski, A., Kramarczyk, W. J.: Physica39, 575 (1968)CrossRefADSGoogle Scholar
  13. 13.
    Hashitsume, N., Shibata, F., Shingu, M.: J. Stat. Phys.17, 155 (1977)CrossRefADSGoogle Scholar
  14. 14.
    Shibata, F., Takahashi, Y., Hashitsume, N.: J. Stat. Phys.17, 171 (1977)CrossRefADSMathSciNetGoogle Scholar
  15. 15.
    Gzyl, H.: J. Stat. Phys.26, 679 (1981)CrossRefGoogle Scholar
  16. 16.
    Tokuyama, M., Mori, H.: Progr. Theor. Phys.55, 411 (1976)MATHCrossRefADSMathSciNetGoogle Scholar
  17. 17.
    Silinsh, E. A., Čápek, V.: Molecular Crystals. New York: Amer. Inst. of Physics (1994)Google Scholar
  18. 18.
    Marcus, R. A.: J. Chem. Phys.24, 966 (1956)CrossRefADSGoogle Scholar
  19. 19.
    Marcus, R. A.: J. Chem. Phys.24, 979 (1956)CrossRefADSGoogle Scholar
  20. 20.
    Mori, H.: Progr. Theor. Phys.33, 423 (1965)MATHCrossRefADSGoogle Scholar
  21. 21.
    Čápek, V.: Physica A203, 495 (1994)CrossRefADSGoogle Scholar
  22. 22.
    Čápek, V.: Czech. J. Phys.43, 829 (1993)CrossRefADSGoogle Scholar
  23. 23.
    P. Reineker, Z. Physik261, 187 (1973)CrossRefADSGoogle Scholar
  24. 24.
    Einstein, A.: Verhandl. Deutch. Physik. Gesellschaft18, 318 (1916)ADSGoogle Scholar
  25. 25.
    Einstein, A.: Mitt. Physik. Gesellschaft (Zürich)18, 47 (1916) (also Physik. Zeitschrift18, 121 (1917))ADSGoogle Scholar
  26. 26.
    Marcus, R. A.: J. Chem. Phys.24, 979 (1956)CrossRefADSGoogle Scholar
  27. 27.
    Zusman, L. D.: Chem. Phys.49, 295 (1980)CrossRefADSMathSciNetGoogle Scholar
  28. 28.
    Rips, I., Jortner, J.: J. Chem. Phys.87, 2090 (1987)CrossRefADSGoogle Scholar
  29. 29.
    Marcus, R. A., Sutin, N.: Biochim. Biophys. Acta811, 265 (1985)Google Scholar
  30. 30.
    Eyring, H., Lin, S. H., Lin, S. M.: Basic Chemical Kinetics. New York-Chichester-Brisbane-Toronto: John Wiley & Sons (1980)Google Scholar
  31. 31.
    Smith, Ian W. M.: Kinetics and dynamics of elementary gas reactions. London, Boston, Sydney: Butterworth 1980Google Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • Vladislav Čápek
    • 1
    • 2
  1. 1.Institute for Physical ChemistryUniversity of WienWienAustria
  2. 2.Faculty of Mathematics and PhysicsInstitute of Physics of Charles UniversityPrague 2Czech Republic

Personalised recommendations