, 42:201 | Cite as

Delayed effects in aphid-parasitoid systems: Consequences for evaluating biological control species and their use in augmentation strategies

  • J. Rochat


A particular feature of aphid-parasitoid systems is the existence of a delay between parasitisation (sting) and the death of the host (i.e. mummification). This biological trait is generally not considered important for population stability, except if the delay is very long, and hence it is ignored in most population dynamics studies. However, many crops have relatively short durations, and these time delays may have important consequences and cannot be ignored in a dynamics model. In this study, we are looking for the key-factors that influence an aphidparasitoid system population dynamics during a cropping cycle.

Specifically, a simple model based on ordinary and delay differential equations and including biologically meaningful parameters was developed for aphidparasitoid systems and used to examine: (1) effect of biological characteristics of both the aphid and the parasitoid on their dynamics, (2) the effect of parasitoid augmentation on the dynamics of the system (e.g.: date, number and importance of the releases of parasitoids), and (3) to compare observedAphis gossypii — Lysiphlebus testaceipes dynamics in a cucumber crop to the predictions of the model.

Good fits between the model and the field data were obtained and suggest that this model may be a powerful tool for selecting species of parasitoid and strategies for their use in biological control augmentation programs for aphid pest management.


population dynamics modelling protected crop Aphis gossypii Lysiphlebus testaceipes 

Effet retard dans les systèmes puceron-parasitoïde : conséquences pour l’évaluation des auxiliaires et leur utilisation en lutte biologique


Une particularité des systèmes hôte-parasitoïde est l’existence d’un retard entre la piqûre parasitaire et la mort de l’hôte (i.e. momification pour les pucerons). Cet aspect n’est généralement pas considéré comme décisif pour la stabilité des populations, sauf si le retard est très long, et, de ce fait, généralement ignoré dans la plupart des études de dynamique de populations. Cependant, la plupart des cultures ont une durée relativement courte, et ce retard peut avoir des conséquences importantes et ne peut être ignoré dans un modèle de dynamique. Dans cette étude, nous recherchons les facteurs clé qui agissent sur la dynamique des populations d’un système puceron-parasitoide pendant la durée d’une culture.

Pour cela, un modèle simple basé sur des équations différentielles à retard, incluant des paramètres biologiques, est établi pour représenter le système puceron-parasitoïde et utilisé: (1) pour examiner l’effet des caractéristiques biologiques du puceron et du parasitoïde, (2) pour examiner celui de différentes stratégies de lâcher de parasitoïdes sur la dynamique des populations, et (3) pour comparer la dynamique du coupleAphis gossypii — Lysiphlebus testaceipes en serre de concombre avec les prédictions du modèle.

Le bon ajustement du modèle aux données de terrain suggère que le modèle peut être un outil puissant pour choisir des espèces de parasitoïdes et définir des stratégies de lâcher d’auxiliaires pour les programmes de lutte biologique contre les pucerons.


  1. Abell, M. L. &Braselton, J. P. — 1993. Differential equations with Mathematica. —Academic Press, London. 631 pp.Google Scholar
  2. Barlow, N. D. &Dixon, A. F. G. — 1980. Simulation of lime aphid population dynamics. —Pudoc, Wageningen. 165 pp.Google Scholar
  3. Dixon, A. F. G. — 1987. Parthenogenetic reproduction and the rate of increase in aphids.In: Aphids, (Minks & Harrewijn, eds), vol. 2A. —Elsevier, 269–289.Google Scholar
  4. Gilbert, N. &Gutierrez, A. P. — 1973. A plant-aphid-parasite relationship. —J. Anim. Ecol., 42, 323–340.CrossRefGoogle Scholar
  5. Gilbert, N., Gutierrez, A. P., Frazer, B. D. & Jones, R. E. — 1976. Ecological relationships. —W. H. Freeman & Co. 157 pp.Google Scholar
  6. Holling, C. S. — 1966. The functional response of invertebrate predators to prey density. —Mem. Entomol. Soc. Can., 48, 3–86.Google Scholar
  7. Hughes, R. D., Woolcock, L. T. &Hughes, M. A. — 1992. Laboratory evaluation of parasitic hymenoptera used in attempts to biologically control aphid pests of crops in Australia. —Entomol. exp. appl., 63, 177–185.CrossRefGoogle Scholar
  8. Kindlmann, P. &Dixon, A. F. G. — 1993. Optimal foraging in ladybird beetles (Coleoptera: Coccinellidae) and its consequences for their use in biological control. —Eur. J. Entomol., 90, 443–450.Google Scholar
  9. Kindlmann, P. & Dixon, A. F. G. — 1997. Strategies of aphidophagous predators: lessons for modelling insect predator-prey dynamics. —Entomophaga, this issue.Google Scholar
  10. Lapchin, L., Boll, R., Rochat, J., Geria, A. M. & Franco, E. — 1997. Using projection pursuit nonparametric regression in modelling insect densities from visual abundance classes. —Environ. Entomol., in press.Google Scholar
  11. May, R. M. &Hassell, M.P. — 1988. Population dynamics and biological control. —Phil. Trans. R. Soc. Lond.,B 318: 129–169.Google Scholar
  12. Murdoch, W. W. — 1990. The relevance of pest-enemy models to biological control. —Critical Issues in Biological Control. (MacKauer, Ehler & Roland, eds), Intercept., 1–24.Google Scholar
  13. Murray, J. D. — 1993. Mathematical Biology, 2nd Ed.,Springer-Verlag, 767 pp.Google Scholar
  14. Nisbet, R. M. &Gurney, W. S. C. — 1982. Modeling fluctuating populations. —J. Wiley & Sons, London. 379 pp.Google Scholar
  15. Renshaw, E. — 1991. Modelling biological populations in space and time. —Cambridge University Press, 403 pp.Google Scholar
  16. Van Lenteren, J. C. &Woets, J. — 1988. Biological and integrated pest control in greenhouses. —Ann. Rev. Entomol., 33, 239–269.CrossRefGoogle Scholar
  17. Van Steenis, M. — 1993. Intrinsic rate of increase ofAphidius colemani Vier. (Hym., Braconidae), a parasitoid ofAphis gossypii Glov. (Hom., Aphididae), at different temperatures. —J. Appl. Ent., 116, 192–198.Google Scholar
  18. Van Steenis, M. — 1994. Intrinsic rate of increase ofLysiphlebus testaceipes Cresson (Hymenoptera: Braconidae), a parasitoid ofAphis gossypii Glover (Homoptera: Aphididae), at different temperatures. —J. Appl. Ent., 118, 399–406.CrossRefGoogle Scholar
  19. Van Steenis, M. J. — 1995. Evaluation of four aphidiine parasitoids for biological control ofAphis gossypii. —Entomol. exp. appl., 75, 151–157.CrossRefGoogle Scholar
  20. Wolfram Research, Inc. — 1992. Mathematica 2.2. User’s guide. —Wolfram Research, Inc., Champaign, Illinois. 961 pp.Google Scholar

Copyright information

© Lavoisier Abonnements 1997

Authors and Affiliations

  • J. Rochat
    • 1
  1. 1.INRA Research Unit on Population BiologyAntibes CedexFrance

Personalised recommendations