Zeitschrift für Physik A Hadrons and Nuclei

, Volume 355, Issue 1, pp 407–413 | Cite as

Analysis of Boltzmann-Langevin dynamics in nuclear matter

  • S. Ayik
  • Ph. Chomaz
  • M. Colonna
  • J. Randrup


The Boltzmann-Langevin dynamics of harmonic modes in nuclear matter is analyzed within linear-response theory, both with an elementary treatment and by utilizing the frequency-dependent response function. It is shown how the source terms agitating the modes can be obtained from the basicBL correlation kernel by a simple projection onto the associated dual basis states, which are proportional to the RPA amplitudes and can be expressed explicitly. The source terms for the correlated agitation of any two such modes can then be extracted directly, without consideration of the other modes. This facilitates the analysis of collective modes in unstable matter and makes it possible to asses the accuracy of an approximate projection technique employed previously.


25.70.N 47.20 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Schuck, R. W. Hasse, J. Jänicke, C. Gregoire, B. Remaud, F. Sebille, and E. Suraud, Prog. Part. Nucl. Phys. 22 (1989) 181CrossRefADSGoogle Scholar
  2. 2.
    W. Cassing, V. Metag, U. Mosel, and K. Niita, Phys. Rep. 188 (1990) 363CrossRefADSGoogle Scholar
  3. 3.
    W. Cassing and U. Mosel, Prog. Part. Nucl. Phys. 25 (1990) 235CrossRefADSGoogle Scholar
  4. 4.
    P. Bonche, S.E. Koonin, and J.W. Negele, Phys. Rev. C13 (1979) 226Google Scholar
  5. 5.
    L.W. Nordheim, Proc. Roy. Soc. A119 (1928) 689CrossRefADSGoogle Scholar
  6. 6.
    E.A. Ühling and G.E. Uhlenbeck, Phys. Rev 43 (1933) 552MATHCrossRefADSGoogle Scholar
  7. 7.
    J. Randrup, Nucl. Phys. A314 (1979) 429ADSGoogle Scholar
  8. 8.
    G.F. Bertsch, H. Kruse, and S. Das Gupta, Phys. Rev. C (1984) 673Google Scholar
  9. 9.
    G.F. Bertsch and S. Das Gupta, Phys. Rep. 160 (1988) 190CrossRefADSGoogle Scholar
  10. 10.
    S. Ayik and C. Gregoire, Phys. Lett. B212 (1988) 269; Nucl. Phys. A513 (1990) 187ADSGoogle Scholar
  11. 11.
    J. Randrup and B. Remaud, Nucl. Phys. A514 (1990) 339ADSGoogle Scholar
  12. 12.
    Ph. Chomaz, G.F. Burgio, and J. Randrup, Phys. Lett. B254 (1991) 340; G.F. Burgio, Ph. Chomaz, and J. Randrup, Nucl. Phys. A529 (1991) 157ADSGoogle Scholar
  13. 13.
    J. Randrup and S. Ayik, Nucl. Phys. 572 (1994) 489CrossRefGoogle Scholar
  14. 14.
    G.F. Burgio, Ph. Chomaz and J. Randrup, Phys. Rev. Lett. 69 (1992) 885CrossRefADSGoogle Scholar
  15. 15.
    M. Colonna, Ph. Chomaz, and J. Randrup, Nucl. Phys. A567 (1994) 637ADSGoogle Scholar
  16. 16.
    M. Colonna and Ph. Chomaz, Phys. Rev. C49 (1994) 1908ADSGoogle Scholar
  17. 17.
    M. Colonna, Ph. Chomaz, A. Guarnera, and B. Jacquot, Phys. Rev. C51 (1995) 2671ADSGoogle Scholar
  18. 18.
    M. Colonnaet al., Phys. Rev. C47 (1993) 1395ADSGoogle Scholar
  19. 19.
    Ph. Chomaz, M. Colonna, A. Guarnera, and J. Randrup, Phys. Rev. Lett. 73 (1994) 3512CrossRefADSGoogle Scholar
  20. 20.
    C.J. Pethick and D.G. Ravenhall, Ann. Phys. 183 (1988) 131CrossRefADSGoogle Scholar
  21. 21.
    J. Randrup, LBL-35848, in preparationGoogle Scholar
  22. 22.
    E. de Lima Medeiros and J. Randrup, Nucl. Phys. A529 (1991) 115ADSGoogle Scholar
  23. 23.
    E.M. Lifshitz and L.P. Pitaevskii,Physical Kinetics, Pergamon Press, New York (1981)Google Scholar
  24. 24.
    S. Ayik and J. Randrup, Phys. Rev. C50 (1994) 115Google Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • S. Ayik
    • 1
  • Ph. Chomaz
    • 2
  • M. Colonna
    • 2
    • 3
  • J. Randrup
    • 4
  1. 1.Department of PhysicsTennessee Technological University CookevilleUSA
  2. 2.GANILCaen CedexFrance
  3. 3.LNS, Viale Andrea DoriaCataniaItaly
  4. 4.Nuclear Science DivisionLawrence Berkeley Laboratory University of CaliforniaBerkeleyUSA

Personalised recommendations