Skip to main content
Log in

On the equivalence of kriging and maximum entropy estimators

  • Published:
Mathematical Geology Aims and scope Submit manuscript

Abstract

This study compares kriging and maximum entropy estimators for spatial estimation and monitoring network design. For second-order stationary random fields (a subset of Gaussian fields) the estimators and their associated interpolation error variances are identical. Simple lognormal kriging differs from the lognormal maximum entropy estimator, however, in both mathematical formulation and estimation error variances. Two numerical examples are described that compare the two estimators. Simple lognormal kriging yields systematically higher estimates and smoother interpolation surfaces compared to those produced by the lognormal maximum entropy estimator. The second empirical comparison applies kriging and entropy-based models to the problem of optimizing groundwater monitoring network design, using six alternative objective functions. The maximum entropy-based sampling design approach is shown to be the more computationally efficient of the two.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amorocho, J., and Espildora, B., 1973, Entropy in the assessment of uncertainty in hydrologic systems and models: Water Resources Res., v. 9, no. 6, p. 1511–1522.

    Google Scholar 

  • Andricevic, R., and Foufoula-Georgiou, E., 1991, A transfer function approach to sampling network design for ground water contamination: Water Resources Res., v. 27, no. 10, p. 2759–2770.

    Article  Google Scholar 

  • Bras, R. L., and Rodriguez-Iturbe, I., 1985, Random functions and hydrology: Addison-Wesley Publ. Co., Reading, Massachusetts, 559 p.

    Google Scholar 

  • Caselton, W. F., and Husain, T., 1980, Hydrologic networks: information transmission: Jour. Water Resource Planning and Management Division, ASCE, v. 106, no. WR2, p. 503–520.

    Google Scholar 

  • Chapman, T. G., 1986, Entropy as a measure of hydrologie data uncertainty and model performance: Jour. Hydrology, v. 85, no. 1/2, p. 111–126.

    Article  Google Scholar 

  • Christakos, G., 1990, A Bayesian/maximum-entropy view to the spatial estimation problem: Math. Geology, v. 22, no. 7, p. 763–777.

    Article  Google Scholar 

  • Christakos, G., 1991, Some applications of the Bayesian/maximum-entropy concepts in geostatistics,in Grandy, W. T., and Schick, L. H., eds., Maximum entropy and bayesian methods: Kluwer Acad. Publ., Dordrecht, The Netherlands, p. 215–229.

    Google Scholar 

  • Christakos, G., 1992, Random field models in earth sciences: Academic Press, San Diego, California, 474 p.

    Google Scholar 

  • Christakos, G., and Olea, R. A., 1992, Sampling design for spatially distributed hydrogeologic and environmental processes: Advances in Water Resources, v. 15, no. 14, p. 219–238.

    Article  Google Scholar 

  • Christensen, R., 1991, Linear models for multivariate time series, and spatial data: Springer-Verlag, New York, 317 p.

    Google Scholar 

  • Cressie, N., 1990, The origins of kriging: Math. Geology, v. 22, no. 3, p. 239–252.

    Article  Google Scholar 

  • Cressie, N., 1993, Statistics for spatial data (revised ed.): John Wiley & Sons, New York, 900 p.

    Google Scholar 

  • David, M., 1988, Handbook of applied advanced geostatistical ore reserve estimation: Elsevier Science Publ. Co., New York, 216 p.

    Google Scholar 

  • de Marsily, G., 1985, Quantitative hydrogeology: Groundwater hydrology for engineers: Academic Press, Orlando, Florida, 440 p.

    Google Scholar 

  • Dowd, P. A., 1982, Lognormal kriging—the general case: Math. Geology, v. 14, no. 15, p. 475–499.

    Google Scholar 

  • Dowd, P. A., 1992, A review of recent developments in geostatistics: Computers & Geosciences, v. 17, no. 10, p. 1481–1500.

    Article  Google Scholar 

  • Fedorov, V. V., 1972, Theory of optimal experiments: Academic Press, New York, 292 p. (Studden, W. J., and Klimko, E. M., translators).

    Google Scholar 

  • Fedorov, V. V., 1988, Experimental design technique in the optimization of a monitoring network,in Fedorov, V. V., and Lanter, H., eds., Model-oriented data analysis: Springer-Verlag, Berlin, 238 p.

    Google Scholar 

  • Fedorov, V. V., and Mueller, W., 1989, Comparison of two approaches in the optimal design of an observation network: Statistics, v. 20, no. 3, p. 339–351.

    Article  Google Scholar 

  • Harmancioglu, N., and Yevjevich, V., 1987, Transfer of hydrologic information among river points: Jour. Hydrology, v. 91, no. 1-2, p. 103–118.

    Article  Google Scholar 

  • Husain, T., 1989, Hydrologic uncertainty measure and network design: Water Resources Bull., v. 25, no. 3, p. 527–534.

    Google Scholar 

  • Jaynes, E. T., 1957, Information theory and statistical mechanics: Physical Review, v. 106, no. 4, p. 620–630.

    Article  Google Scholar 

  • Jaynes, E. T., 1982, On the rationale of maximum-entropy methods: Proc. IEEE, v. 70, no. 9, p. 939–952.

    Google Scholar 

  • Johnson, N. L., and Kotz, S., 1972, Distributions in statistics: continuous multivariate distributions: John Wiley & Sons, New York, 333 p.

    Google Scholar 

  • Jones, D. S., 1979, Elementary information theory: Oxford Univ. Press, New York, 182 p.

    Google Scholar 

  • Joumel, A. G., 1980, The lognormal approach to predicting local distribution of selective mining unit grades: Math. Geology, v. 12, no. 4, p. 285–303.

    Article  Google Scholar 

  • Joumel, A. G., 1989, Fundamentals of geostatistics in five lessons (short course presented at the 28th Intern. Geol. Congress): Am. Geophy. Union, Washington, D.C., 40 p.

    Google Scholar 

  • Joumel, A. G., and Deutsch, C. V., 1993, Entropy and spatial disorder: Math. Geology, v. 25, no. 3, p. 329–355.

    Article  Google Scholar 

  • Joumel, A. G., and Huijbregts, Ch. J., 1978, Mining geostatistics: Academic Press, London, 600 P.

    Google Scholar 

  • Kapur, J. N., 1989, Maximum-entropy models in science and engineering: John Wiley & Sons, New York, 635 p.

    Google Scholar 

  • Kapur, J. N., and Kesavan, H. K., 1992, Entropy optimization principles with applications: Academic Press, Boston, Massachusetts, 408 p.

    Google Scholar 

  • Kvålseth, T., 1982, Some information properties of the lognormal distribution: IEEE Trans. on Information Theory, v. IT-28, no. 6, p. 963–966.

    Article  Google Scholar 

  • Lindley, D. V., 1956, On the measure of the information provided by an experiment: Ann. Math. Statistics, v. 27, no. 4, p. 986–1005.

    Google Scholar 

  • Matheron, G., 1963, Principles of geostatistics: Econ. Geology, v. 58, no. 8, p. 1246–1266.

    Article  Google Scholar 

  • Matheron, G., 1973, The intrinsic random functions and their applications: Advances in Applied Probability, v. 5, p. 438–468.

    Article  Google Scholar 

  • Rendu, J.-M. M., 1979, Normal and lognormal estimation: Math. Geology, v. 11, no. 4, p. 407–422.

    Article  Google Scholar 

  • Rivoirard, J., 1994, Introduction to disjunctive kriging and non-linear geostatistics: Clarendon Press, Oxford, 180 p.

    Google Scholar 

  • Rouhani, S., 1985, Variance reduction analysis: Water Resources Res., v. 21, no. 6, p. 837–846.

    Google Scholar 

  • Rouhani, S., and Fiering, M. B., 1986, Resilience of a statistical sampling scheme: Jour. Hydrology, v. 89, no. 1-2, p. 1–11.

    Article  Google Scholar 

  • Rouhani, S., and Hall, T. J., 1988, Geostatistical scheme for groundwater sampling: Jour. Hydrology, v. 103, no. 1-2, p. 85–102.

    Article  Google Scholar 

  • Sacks, J., and Schiller, S., 1988, Spatial designs,in Gupta, S. S., and Berger, J. O., eds., Statistical design theory and related topics IV-2: Springer-Verlag, New York, p. 385–399.

    Google Scholar 

  • Shannon, C. E., 1948, A mathematical theory of communication: The Bell System Tech. Jour., v. 27, p. 379–423, 623–656. Reprintedin Claude Elwood Shannon Collected Papers (Sloane, N. J. and Wyner, A. D., eds., 1993): IEEE Press, p. 5–83.

    Google Scholar 

  • Shewry, M. C., and Wynn, H. P., 1987, Maximum entropy sampling: Jour. Applied Statistics, v. 14, no. 2, p. 165–170.

    Article  Google Scholar 

  • Singh, V. P., 1989, Hydrologic modeling using entropy: Jour. Engineers, Civil Engineering Division, v. 70, no. CV2, p. 55–60.

    Google Scholar 

  • Singh, V. P., Rajagopal, A. K., and Singh, K., 1986, Derivation of some frequency distributions using the principle of maximum entropy: Advances in Water Research, v. 9, no. 2, p. 91–106.

    Article  Google Scholar 

  • Singh, V. P., and Singh, K., 1985, Derivation of the gamma distribution by using the principle of maximum entropy: Water Resources Bull., v. 21, no. 6, p. 941–952.

    Google Scholar 

  • Theil, H., and Fiebig, D. G., 1984, Exploiting continuity, maximum entropy estimation of continuous distributions: Ballinger Publ. Co., Cambridge, Massachusetts, 246 p.

    Google Scholar 

  • Tribus, M., 1978, Thirty years of information theory,in Levine, R. D., and Tribus, M., eds., The maximum entropy formalism: The MIT Press, Cambridge, Massachusetts, 498 p.

    Google Scholar 

  • Trujillo-Ventura, A., and Ellis, J. H., 1991, Multiobjective air pollution monitoring network design: Atmospheric Environment, v. 25A, no. 2, p. 469–479.

    Google Scholar 

  • Vanmarcke, E., 1983, Random fields: analysis and synthesis: The MIT Press, Cambridge, Massachusetts, 382 p.

    Google Scholar 

  • Wu, S., and Zidek, J. V., 1992, An entropy-based analysis of data from selected NAPD/NTN network sites for 1983–1986: Atmospheric Environment, v. 26A, no. 11, p. 2089–2103.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, YM., Ellis, J.H. On the equivalence of kriging and maximum entropy estimators. Math Geol 29, 131–152 (1997). https://doi.org/10.1007/BF02769622

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02769622

Key Words

Navigation