Skip to main content
Log in

Electro-magnetic nucleon form factors and their spectral functions in soliton models

  • Published:
Zeitschrift für Physik A Hadrons and Nuclei

Abstract

It is demonstrated that in simple soliton models essential features of the electro-magnetic nucleon form factors observed over three orders of magnitude in momentum transfert are naturally reproduced. The analysis shows that three basic ingredients are required: an extended object, partial coupling to vector mesons, and relativistic recoil corrections. We use for the extended object the standard skyrmion, one vector meson propagator for both isospin channels, and the relativistic boost to the Breit frame. Continuation to time-liket leads to quite stable results for the spectral functions in the regime from the 2- or 3-pion threshold to about two rho masses. Especially the onset of the continuous part of the spectral functions at threshold can be reliably determined and there are strong analogies to the results imposed on dispersion theoretic approaches by the unitarity constraint.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Braaten, S.M. Tse, C. Willcox: Phys. Rev.D34 (1986) 1482; Phys. Rev. Lett.56 (1986) 2008.

    ADS  Google Scholar 

  2. U.G. Meissner, N. Kaiser, W. Weise: Nucl. Phys.A466 (1987) 685; U.G. Meissner: Phys. Rep.161 (1988) 213.

    ADS  Google Scholar 

  3. N. Kaiser, U. Vogl, W. Weise, U.G. Meissner: Nucl. Phys.A484 (1988) 593.

    ADS  Google Scholar 

  4. F. Meier: in: Baryons as Skyrme solitons, ed. G. Holzwarth (World Scientific, Singapore 1993) p. 159.

    Google Scholar 

  5. A.L. Licht, A. Pagnamenta: Phys. Rev.D 2 (1976) 1150; and 1156.

    ADS  Google Scholar 

  6. F. Foster, G. Hughes: Z. Phys. C.14 (1982) 123.

    Article  ADS  Google Scholar 

  7. M.V. Barnhill: Phys. Rev.D20 (1979) 723.

    ADS  Google Scholar 

  8. M. Betz, R. Goldflam: Phys. Rev.D28 (1983) 2848; X.M. Wang, P.C. Yin: Phys. Lett.B140 (1984) 249; C.J. Benesh, G.A. Miller: Phys. Rev.D36 (1987) 1344.

    ADS  Google Scholar 

  9. M. Warns, H. Schröder, W. Pfeil, H. Rollnik: Z. Phys. C45 (1990) 613; and 627.

    ADS  Google Scholar 

  10. M.A. Ivanov, M.P. Locher, V.E. Lyubovitskij: PSI-PR-96-08, hep-ph/9602372.

  11. Xiangdong Ji: Phys. Lett.B254 (1991) 456.

    ADS  Google Scholar 

  12. G. Holzwarth: Prog. Part. Nucl. Phys.36 (1996) 161.

    Article  Google Scholar 

  13. See refs.4–8,30–51 in A.F. Sill et al. [37].

  14. G. Höhler et al.: Nucl. Phys.B114 (1976) 505; G. Höhler:πN NewsletterNo. 9 (1993) 108, ISSN 0942-4148.

    Article  ADS  Google Scholar 

  15. W.R. Frazer, J.R. Fulco: Phys. Rev.117 (1960) 1603.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  16. J.E. Bowcock, W.N. Cottingham, J.G. Williams: Nucl. Phys.B3 (1967) 95.

    Article  ADS  Google Scholar 

  17. T.H.R. Skyrme: Proc. Roy. Soc. Ser.A260 (1961) 127.

    Article  ADS  MathSciNet  Google Scholar 

  18. P. Jain, R. Johnson, U.G. Meissner, N.W. Park, J. Schechter: Phys. Rev.D37 (1988) 3252.

    ADS  Google Scholar 

  19. U.G. Meissner, N. Kaiser, H. Weigel, J. Schechter: Phys. Rev.D39 (1989) 1956.

    ADS  Google Scholar 

  20. B. Schwesinger, H. Weigel, G. Holzwarth, A. Hayashi: Phys. Reports173 (1989) 173; and references therein.

    Article  ADS  Google Scholar 

  21. G. Höhler: In Landolt-Börnstein, Vol.9 b2, ed. H. Schopper (Springer, Berlin, 1983).

    Google Scholar 

  22. V.A. Matveev, R.M. Muradyan, A.N. Tavkhelidze: Lett. Nuovo Cim.7 (1973) 719.

    Article  Google Scholar 

  23. B. Moussallam: Ann. Phys.(NY)225 (1993) 264.

    Article  ADS  Google Scholar 

  24. F. Meier, H. Walliser: hep-ph/9602359, submitted to Phys. Reports.

  25. A. Lung et al.: Phys. Rev. Lett.70 (1993) 718.

    Article  ADS  Google Scholar 

  26. P. Markowitz et al.: Phys. Rev.C48 (1993) R5.

  27. E.E.W. Bruins et al.: Phys. Rev. Lett.75 (1995) 21.

    Article  ADS  Google Scholar 

  28. H. Anklin et al.: Phys. Lett.B336 (1994) 313.

    ADS  Google Scholar 

  29. C.W. Akerlof et al.: Phys. Rev.B135 (1964) 810.

    Article  ADS  Google Scholar 

  30. W. Albrecht et al.: Phys. Lett.B26 (1968) 642.

    ADS  Google Scholar 

  31. S. Rock et al.: Phys. Rev. Lett.49 (1982) 1139.

    Article  ADS  Google Scholar 

  32. P. Stein et al.: Phys. Rev. Lett.16 (1966) 592.

    Article  ADS  Google Scholar 

  33. E.B. Hughes et al.: Phys. Rev.B139 (1965) 458.

    Article  ADS  Google Scholar 

  34. J.R. Dunning et al.: Phys. Rev.141 (1966) 1286.

    Article  ADS  Google Scholar 

  35. S. Platchkov et al.: Nucl. Phys.A510 (1990) 740.

    ADS  Google Scholar 

  36. S. Galster et al.: Nucl. Phys.B32 (1971) 221.

    Article  ADS  Google Scholar 

  37. A.F. Sill et al.: Phys. Rev.D48 (1993) 29.

    ADS  Google Scholar 

  38. L. Andivahis et al.: Phys. Rev.D50 (1994) 5491.

    ADS  Google Scholar 

  39. R.C. Walker et al.: Phys. Rev.D49 (1994) 5671.

    ADS  Google Scholar 

  40. P. Mergell, U.G. Meissner, D. Drechsel: MKPH-T-95-07, hep-ph/9506375; H.-W. Hammer, U.G. Meissner, D. Drechsel: MKPH-T-96-05, hep-ph/9604294.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Holzwarth.

Additional information

Communicated by W. Weise

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holzwarth, G. Electro-magnetic nucleon form factors and their spectral functions in soliton models. Z. Physik A - Hadrons and Nuclei 356, 339–350 (1996). https://doi.org/10.1007/BF02769237

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02769237

PACS

Navigation