International Journal of Theoretical Physics

, Volume 36, Issue 11, pp 2271–2294 | Cite as

Vector states for single and multiple-pole resonances

  • M. Gadella


The formulation of quantum mechanics in rigged Hilbert spaces is used to study the vector states for resonance states or Gamow vectors. An important part of the work is devoted to the construction of Gamow vectors for resonances that appear as multiple poles on the analytic continuation of theS-matrix,S(E). The kinematical behavior of these vectors is also studied. This construction allow for generalized spectral decompositions of the Hamiltonian and the evolutionary semigroups, valid on certain locally convex spaces. Also a first attempt is made to define the resonance states as densities in an extension of the Liouville space, here called rigged Liouville space.


Hilbert Space Vector State Density Operator Dense Subspace Liouville Space 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amrein, W., Jauch, J., and Sinha, B. (1977).Scattering Theory in Quantum Mechanics, Benjamin, New York.MATHGoogle Scholar
  2. Antoine, J. P. (1969).Journal of Mathematical Physics,10, 53.MATHCrossRefADSMathSciNetGoogle Scholar
  3. Antoniou, I., and Prigogine, I. (1993).Physica,192A, 443.ADSMathSciNetGoogle Scholar
  4. Antoniou, I., Gadella, M., and Pron'ko, G. P. (n.d.-a). Gamow vectors for multiple pole resonances, to appear.Google Scholar
  5. Antoniou, I., Gadella, M., and Melnikov, Y. (n.d.-b). To appear.Google Scholar
  6. Bohm, A. (1965).Boulder Lectures in Theoretical Physics,9A, 255.Google Scholar
  7. Bohm, A. (1980).Journal of Mathematical Physics,21, 1040.CrossRefADSMathSciNetGoogle Scholar
  8. Bohm, A. (1981).Journal of Mathematical Physics,22, 2813.CrossRefADSMathSciNetGoogle Scholar
  9. Bohm, A. (1994).Quantum Mechanics: Foundations and Applications, Springer, Berlin.Google Scholar
  10. Bohm, A., and Gadella, M. (1989).Dirac Kets, Gamow Vectors and Gel'fand Triplets, Springer, Berlin.Google Scholar
  11. Bohm, A., Gadella, M., and Maxon, S. (1997).International Journal of Computational and Applied Mathematics, to appear.Google Scholar
  12. Brändas, E. J., and Chatzidimitriou-Dreissmann, C. A. InSpringer Lecture Notes in Physics, Vol. 325, pp. 475–483.Google Scholar
  13. Dirac, P. A. M. (1965).The Principles of Quantum Mechanics, Clarendon Press, Oxford.Google Scholar
  14. Duren, P. (1970).Theory of H p Spaces, Academic Press.Google Scholar
  15. Gadella, M. (1983).Journal of Mathematical Physics,24, 1462.MATHCrossRefADSMathSciNetGoogle Scholar
  16. Gadella, M. (1997).Letters in Mathematical Physics,41, 279.MATHCrossRefMathSciNetGoogle Scholar
  17. Gamow, G. (1928). Zeitschrift für Physik,51, 204.CrossRefADSGoogle Scholar
  18. Gel'fand, I. M., and Vilenkin, N. J. (1964).Generalized Functions, Vol. IV, Academic Press, New York.MATHGoogle Scholar
  19. Katznelson, E. (1980).Journal of Mathematical Physics,21, 1393.CrossRefADSMathSciNetGoogle Scholar
  20. Koosis, P. (1980).Introduction to H P Spaces, Cambridge University Press, Cambridge.MATHGoogle Scholar
  21. Maurin, K. (1968).General Eigenfunction Expansions and Unitary Representations of Topological Groups, Polish Scientific Publisher, Warsaw.MATHGoogle Scholar
  22. Melsheimer, O. (1974).Journal of Mathematical Physics,15, 902.CrossRefADSMathSciNetGoogle Scholar
  23. Newton, R. G. (1982).Scattering Theory of Waves and Particles, Springer-Verlag, Berlin.MATHGoogle Scholar
  24. Nussenszveig, H. M. (1972).Causality and Dispersion Relations, Academic Press.Google Scholar
  25. Petrovski, T., and Prigogine, I. (1991).Physica,175A, 146.ADSGoogle Scholar
  26. Prigogine, I. (1992).Physics Reports,219, 93.CrossRefADSMathSciNetGoogle Scholar
  27. Prugovecki, E. (1981).Quantum Mechanics in Hilbert Space, Academic Press, New York.MATHGoogle Scholar
  28. Reed, M., and Simon, B. (1972).Functional Analysis, Academic Press.Google Scholar
  29. Roberts, J. E. (1966).Communications in Mathematical Physics,3, 98.MATHCrossRefADSMathSciNetGoogle Scholar
  30. Schaeffer, H. H. (1970).Topological Vector Spaces, Springer Verlag, Berlin.Google Scholar
  31. Weidmann, J. (1980).Linear Operators in Hilbert Spaces, Springer-Verlag, Berlin.MATHGoogle Scholar
  32. Van Winter, C. (1974).Journal of Mathematical Analysis,47, 633.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • M. Gadella
    • 1
  1. 1.Departamento de Física Teórica, Facultad de CienciasUniversidad de ValladolidValladolidSpain

Personalised recommendations