Mathematical Geology

, Volume 29, Issue 6, pp 849–858 | Cite as

Random field generation using simulated annealing vs. fractal-based stochastic interpolation

  • J. H. Fang
  • P. P. Wang
Short Note


Hydraulic Conductivity Simulated Annealing Annealing Schedule Fractal Interpolation Hydraulic Conductivity Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Deutsch, C. V., and Journel, A. G., 1991, The application of simulated annealing to stochastic reservoir modeling: Soc. Petroleum Engineering, SPE Paper 23565, 30 p.Google Scholar
  2. Dougherty, D. E., and Marryott, R. A., 1991, Optimal groundwater management; 1, Simulated annealing: Water Resources Res., v. 27, no. 10, p. 2493–2508.CrossRefGoogle Scholar
  3. Hewett, T. A., 1986, Fractal distributions of reservoir heterogeneity and their influences on fluid transport: Soc. Petroleum Engineering, SPE Paper 15386, 17 p.Google Scholar
  4. Halderson, H. H., and Damsleth, E., 1990, Stochastic modeling: Jour. Petroleum Technology, v. 42, no. 4, p. 404–412.Google Scholar
  5. Kirkpatrick, S., Gelatt, C., and Vecchi, M., 1983, Optimization by simulated annealing: Science, v. 220, no. 4598, p. 671–680.CrossRefGoogle Scholar
  6. Laarhoven, P. V., and Aarts, E., 1987, Simulated annealing: theory and applications: Reidel, Dordrecht, The Netherlands, 186 p.Google Scholar
  7. Marryott, R., Dougherty, D. E., and Stollar, R. L., 1993, Optimal groundwater management 2. Applications of simulated annealing to a field-scale contamination site: Water Resources Res., v. 29, no. 4, p. 847–860.CrossRefGoogle Scholar
  8. Mauldon, A. D., Karasaki, K., Martel, S., Long, J., Landsfeld, M., Mensch, A., and Vomvoris, S., 1993, An inverse technique for developing models for fluid flow in fracture systems using simulated annealing: Water Resources Res., v. 29, no. 11, 3775–3789.CrossRefGoogle Scholar
  9. Molz, F., and Boman, G. K., 1993, A fractal-based stochastic interpolation scheme in subsurface hydrology: Water Resources Res., v. 29, no. 11, p. 3769–3774.CrossRefGoogle Scholar
  10. Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P., 1992, Numerical recipes (2nd ed.): Cambridge Univ. Press, Cambridge, 994 p.Google Scholar
  11. Voss, R., 1985, Random fractal forgeries,in Eamshaw, R. A., ed., Fundamental algorithms for computer graphics: Springer-Verlag, Berlin, p. 805–835.Google Scholar
  12. Wang, P. P., and Chen, D., 1994, Annealing using statistical inference and hierarchical structure for reservoir optimization models: Tech. Rept., Univ. Alabama, 31 p.Google Scholar
  13. Wang, P. P., and Chen, D., 1996, Continuous optimization by a variant of simulated annealing: Computational Optimization and Applications, v. 6, p. 59–71.Google Scholar
  14. Zheng, C., and Wang, P. P., 1996, Parameter structure identification using tabu search and simulated annealing: Adv. Water Res., v. 19, no. 4, p. 215–224.CrossRefGoogle Scholar

Copyright information

© International Association for Mathematical Geology 1997

Authors and Affiliations

  • J. H. Fang
    • 1
  • P. P. Wang
    • 2
  1. 1.Department of GeologyThe University of AlabamaTuscaloosa
  2. 2.Department of MathematicsThe University of AlabamaTuscaloosa

Personalised recommendations