Journal of Solution Chemistry

, Volume 26, Issue 9, pp 889–911 | Cite as

Thermodynamics ofN,N,N-octylpentyldimethyl-ammonium chloride in water-urea mixtures

  • R. De Lisi
  • B. Marongiu
  • S. Milioto
  • B. Pittau
  • S. Porcedda


Specific conductivities, densities, heat capacities, and enthalpies of dilution at 25‡C were measured forN,N,N-octylpentyldimethylammonium chloride (OPAC) in water-urea mixtures at various urea concentrations mu as functions of the surfactant concentration ms. From conductivity data, the cmc and the degree of the counterion dissociation Β of the OPAC micelles were calculated. The cmc increases linearly with increasingm u while Βvs. mu is a smooth concave curve. From the experimental thermodynamic data, the apparentY Φ and partialY 2 molar properties (volumes, heat capacities, and relative enthalpies) are derived as functions of mu andm s . The effect of urea on the dependences of the different properties on ms are discussed. From data in the premicellar region the standard partial molar volumesV 2 0 and heat capacitiesC p2 0 were evaluated. It was observed thatV 2 0 increases linearly withm u whileC p2 0 decreases. The properties of OPAC in the dispersed and micellized forms at the cmc were obtained and, therefore, the thermodynamic functions of micellization were calculated on the basis of the pseudo-phase transition model.

Key Words

N,N,N-octylpentyldimethylammonium chloride urea conductivities densities heat capacities enthalpies of dilution partial molar volumes partial molar heat capacities partial molar relative enthalpies critical micelles concentrations degrees of counterion dissociation thermodynamics of micellization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. V. Dearden and E. M. Woolley,J. Phys. Chem. 91, 2404 (1987).CrossRefGoogle Scholar
  2. 2.
    E. Vikingstad and O. Kvammen,J. Colloid Interface Sci. 74, 16 (1980).CrossRefGoogle Scholar
  3. 3.
    H. Hoiland and E. Vikingstad,J. Colloid Interface Sci. 64, 126 (1978).CrossRefGoogle Scholar
  4. 4.
    G. Perron, R. De Lisi, I. Davidson, S. Genereux, and J. E. Desnoyers,J. Colloid Interface Sci. 79, 432 (1981).CrossRefGoogle Scholar
  5. 5.
    S. Backlund, B. Bergenstal, O. Molander, and T. Warnheim,J. Colloid Interface Sci. 131, 393 (1989).CrossRefGoogle Scholar
  6. 6.
    L. Espada, M. N. Jones, and G. Pilcher,J. Chem. Thermodyn. 2, 1 (1970).CrossRefGoogle Scholar
  7. 7.
    G. Pilcher, M. N. Jones, L. Espada, and H. A. Skinner,J. Chem. Thermodyn. 1, 381 (1969).CrossRefGoogle Scholar
  8. 8.
    G. M. Musbally, G. Perron, and J. E. Desnoyers,J. Colloid Interface Sci. 54, 80 (1976).CrossRefGoogle Scholar
  9. 9.
    P. K. Singh, J. C. Ahluwalia, inSurfactants in Solution, K. L. Mittal, ed., (Plenum Press, New York, 1989).Google Scholar
  10. 10.
    S. Causi, R. De Lisi, S. Milioto, and N. Tirone,J. Phys. Chem. 95, 5664 (1991).CrossRefGoogle Scholar
  11. 11.
    E. Caponetti, S. Causi, A. M. Floriano, R. De Lisi, S. Milioto, and R. Triolo,J. Phys. Chem. 96, 4950 (1991).CrossRefGoogle Scholar
  12. 12.
    D.G. Archer, V. Majer, A. Inglese, and R.H. Wood,J. Colloid Inrerface Sci. 124, 591 (1988).CrossRefGoogle Scholar
  13. 13.
    M. Tanaka, S. Kaneshina, K. Shin-No, T. Okajima, and T. Tomida,J. Colloid Interface Sci. 46, 132 (1974).CrossRefGoogle Scholar
  14. 14.
    S. Milioto, S. Causi, R. Crisantino, and R. De Lisi,J. Thermal Anal. 38, 2693 (1992).CrossRefGoogle Scholar
  15. 15.
    S. Milioto, M. S. Bakshi, R. Crisantino, and R. De Lisi,J. Colloid Interface Sci. 159, 354 (1993).CrossRefGoogle Scholar
  16. 16.
    R. E. Verrall, S. Milioto, and R. Zana,J. Phys. Chem. 92, 3939 (1988).CrossRefGoogle Scholar
  17. 17.
    R. De Lisi, V. Turco Liveri, M. Castagnolo, and A. Inglese,J. Solution Chem. 15, 23 (1986).CrossRefGoogle Scholar
  18. 18.
    G. S. Kell,J. Chem. Eng. Data 12, 66 (1966).CrossRefGoogle Scholar
  19. 19.
    J. E. Garrod and T. M. Herrington,J. Phys. Chem. 74, 363 (1970).CrossRefGoogle Scholar
  20. 20.
    M. F. Stimson,Am. J. Phys. 23, 614 (1955).CrossRefGoogle Scholar
  21. 21.
    R. De Lisi, G. Perron, and J. E. Desnoyers,Can. J. Chem. 58, 959 (1980).CrossRefGoogle Scholar
  22. 22.
    C. Treiner,J. Colloid Interface Sci. 92, 444 (1982).CrossRefGoogle Scholar
  23. 23.
    R. Zana, S. Yiv, C. Strazielle, and P. Lianos,J. Colloid Interface Sci. 80, 208 (1981).CrossRefGoogle Scholar
  24. 24.
    L. Benjamin,J. Colloid Interface Sci. 22, 386 (1966).CrossRefGoogle Scholar
  25. 25.
    R. De Lisi, E. Fisicaro, and S. Milioto,J. Solution Chem. 17, 1015 (1988).CrossRefGoogle Scholar
  26. 26.
    R. N. Choudhury and J. C. Ahluwalia,J. Chem. Soc. Faraday Trans. I 77, 3119 (1981).Google Scholar
  27. 27.
    J. C. Ahluwalia and B. Chawla,J. Chem. Soc. Faraday Trans. I 69, 434 (1973).Google Scholar
  28. 28.
    T. S. Sarma and J. C. Ahluwalia,J. Phys. Chem. 76, 1366 (1972).CrossRefGoogle Scholar
  29. 29.
    L. L. Bright and J. R. Jezorek,J. Phys. Chem. 79, 800 (1975).CrossRefGoogle Scholar
  30. 30.
    J. H. Stern and J. D. Kulluk,J. Phys. Chem. 73, 2795 (1969).CrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • R. De Lisi
    • 1
  • B. Marongiu
    • 2
  • S. Milioto
    • 1
  • B. Pittau
    • 2
  • S. Porcedda
    • 2
  1. 1.Dipartimento di Chimica FisicaUniversitá di PalermoPalermoItaly
  2. 2.Dipartimento di Scienze ChimicheUniversitá di CagliariCagliariItaly

Personalised recommendations