Advertisement

Refractories and Industrial Ceramics

, Volume 38, Issue 6, pp 216–219 | Cite as

Unagglomerated powders for transformation-toughened structural ceramics

  • A. V. Galakhov
  • E. V. Tsibailo
Research
  • 19 Downloads

Abstract

Results of a study of the characteristics of ZrO2 powders stabilized by 3 mol% Y2O3 and fabricated by the method of ultrasound spray pyrolysis from aerosols of aqueous solutions of mineral salts are presented. Unlike powders of the same composition obtained by the conventional coprecipitation technique, aerosol powders have coarser particles with a narrower size distribution and do not contain agglomerates. The temperature of sintering coarse aerosol powders to a maximum density is not high (1450°C). Despite the larger grain size in ceramics sintered from aerosol powders, their strength is much higher than that of ceramics obtained from ultradisperse coprecipitated powders of a similar composition.

Keywords

Sinter Temperature Mineral Salt Spray Pyrolysis Tetragonal Zirconia Zirconium Hydroxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. F. Lange, “Transformation toughening,”J. Mat. Sci.,17, 225–263 (1982).CrossRefGoogle Scholar
  2. 2.
    K. Yamada, “Powders for high technology ceramics,”Ber. Dtsch. Keram. Ges., No. 6/7, 250–255 (1987).Google Scholar
  3. 3.
    V. B. Glushkova and L. G. Shcherbakova, “On the crystallization mechanism of amorphous zirconium hydroxide,”Dokl. Akad. Nauk SSSR,197(2), 86–89 (1971).Google Scholar
  4. 4.
    A. V. Galakhov and E. V. Tsibailo, “Packing inhomogeneity in powder compacts and the strength of ceramics fabricated from them,”Ogneupory Tekhn. Keramika, No. 5 (1997).Google Scholar
  5. 5.
    S. Yu. Pliner, Yu. N. Komolikov, V. G. Peichev, and I. S. Lappo, “Effect of hydrostatic treatment on the properties of ceramics from tetragonal zirconia,”Ogneupory, No. 4, 9–11 (1988).Google Scholar
  6. 6.
    A. V. Galakhov, S. V. Kutsev, V. A. Kryuchkov, et al.., “Effect of molding pressure on the sinterability of submicron powders of tetragonal zirconia”,Ogneupory, No. 1, 5–11 (1993).Google Scholar
  7. 7.
    M. J. Rathner, “Industrial production of multicomponent ceramic powders (metal oxides) by means of the spray roasting technique” in: P. Vincenzini (ed.),Ceramic Powders, Elsevier, Amsterdam (1983), pp. 515–531.Google Scholar
  8. 8.
    N. A. Fuks and A. G. Sutugin, “Monodisperse aerosols”,Usp. Khim.,34(2), 276–299 (1965).Google Scholar
  9. 9.
    M. Kerker, “Laboratory generation of aerosols,”Adv. Coll. Int. Sci. 5(2), 105–172 (1975).CrossRefGoogle Scholar
  10. 10.
    H. Ishizawa, O. Sakurai, N. Mizutani, and M. Kato, “Homogeneous Y2O3-stabilized ZrO2 powders by spray pyrolysis method,”Am. Ceram. Soc. Bull.,65(10), 1399–1404 (1986).Google Scholar
  11. 11.
    B. Dubois, D. Ruffier, and Ph. Odier, “Preparation of fine, spherical yttria-stabilized zirconia by spray-pyrolysis”J. Am. Ceram. Soc.,72(4), 713–715 (1989).CrossRefGoogle Scholar
  12. 12.
    S. C. Zhang and G. L. Messing, “Synthesis of solid, spherical zirconia particles by spray pyrolysis”,J. Am Ceram. Soc.,73(1), 61–67 (1990).CrossRefGoogle Scholar
  13. 13.
    R. G. Avery and J. D. F. Ramsay, “The sorption of nitrogen in porous compacts of silica and zirconia powders,”J. Coll. Int. Sci.,42(3), 597–606 (1973).CrossRefGoogle Scholar
  14. 14.
    D. S. Charlesworth and W. R. Marchall, “Evaporation from drops containing dissolved solids,”Am. Inst. Chem. Eng. J.,6(1), 9–23 (1960).Google Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • A. V. Galakhov
    • 1
  • E. V. Tsibailo
    • 1
  1. 1.Moscow State Aircraft Technology UniversityMoscowRussia

Personalised recommendations