Review of Thermal Boundary Resistance of High-Temperature Superconductors

  • Ravi S. Prasher
  • Patrick E. Phelan


Solid-solid thermal boundary resistance plays an important role in the thermal stability of many electronic circuits, microdevices, and superconducting devices. The thermal boundary resistance (R b ) at any interface causes a temperature discontinuity, which can result in heat accumulation on one side of the boundary and raise the temperature much above the stable region, causing device failure. With the advent of high-critical-temperature (high-T c ) superconductors, it is possible to make superconducting devices at practically achievable temperatures. As the current trend goes toward the development of more and more high-Tc superconducting devices, the need for a better understanding of the thermal boundary resistance of high-Tc superconductors becomes mandatory. This paper compiles all the theoretical and experimental work to date onR b in high-Tc superconductors, both in thin-film and bulk forms, and provides a critical review of the cited works. This paper also describes the possible effect of the superconducting state onR b for high-T c superconductors, based on the experiments for both high-Tc and low-Tc bulk superconductors, and a possible explanation for these data based on the existing theory for low-T c superconductors.

Key words

Thermal boundary resistance high temperature superconductors 


  1. 1.
    A. Bourdillon and N. X. T. Bourdillon,High-Temperature Superconductors: Processing and Science (Academic Press, Inc., San Diego, California, 1994).Google Scholar
  2. 2.
    M. I. Flik and C. L. Tien,J. Heat transfer 112, 10 (1990).Google Scholar
  3. 3.
    E. T. Swartz and R. O. Pohl,Rev. Modern Phys. 61, 605 (1989).CrossRefADSGoogle Scholar
  4. 4.
    T. Kilistner and R. O. Pohl,Phys. Rev. B 36, 6551 (1987).CrossRefADSGoogle Scholar
  5. 5.
    P. E. Phelan, Y. Song, O. Nakabeppu, K. Ito, K. Hijakata, T. Ohmori, and K. Torikoshi,J. Heat Transfer 116, 1038 (1994).Google Scholar
  6. 6.
    W. A. Little,Can. J. Phys. 37, 334 (1959).ADSGoogle Scholar
  7. 7.
    M. Nahum, S. Verghese, and P. L. Richards,Appl. Phys. Lett. 59, 2034(1991).CrossRefADSGoogle Scholar
  8. 8.
    P. E. Phelan, to appear inJ. Heat Transfer (1997).Google Scholar
  9. 9.
    B. M. Terzijska, R. Wawryk, D. A. Dimitrov, C. Z. Marucha, V. T. Kovachev, and J. Rafalowicz,Cryogenics 32, 53 (1992).CrossRefADSGoogle Scholar
  10. 10.
    N. Wendling, N. J. Chaussy, J. Mazuer, and J. Odin,Cryogenics 34, 89 (1994).CrossRefGoogle Scholar
  11. 11.
    M. Kelkar, P. E. Phelan, and B. Gu,Int. J. Heat Mass Transfer,40, 2637(1997).CrossRefGoogle Scholar
  12. 12.
    G. D. Marshall, I. M. Fishman, and M. D. Fayer,Phys. Rev. B 43, 2696(1991).CrossRefADSGoogle Scholar
  13. 13.
    G. L. Carr, M. QuiJada, D. B. Tanner, D. B. Hirschoneyl, G. P. Williams, S. Ellmad, B. Dutta, F. De Roja, A. Imam, T. Venkatesan, and X. Xi,Appl. Phys. Lett. 57, 2725 (1990).CrossRefADSGoogle Scholar
  14. 14.
    S. Zeuner, H. Lengfellner, and W. Prettl,Phys. Rev. B 51, 903 (1995).CrossRefGoogle Scholar
  15. 15.
    A. V. Sergeev, A. D. Semenov, P. Kouminev, V. Trifanov. I. G. Goghidze, B. S. Karasik, G. N. Gol’tsman, and E. M. Gesvsherzen,Phys. Rev. B 49, 9091 (1994).CrossRefADSGoogle Scholar
  16. 16.
    A. Sergeev, A. Semenov, V. Trifonov, B. Karasik, G. Gol’tsman, and E. Geshenzen,J. Supercond. 7, 341 (1994).CrossRefADSGoogle Scholar
  17. 17.
    M. Lindgren, V. Trifanov, M. Zorin, M. Danervd, D. Winkler, B. S. Karasik, G. N. Gol’tsman, and E. M. Gershenzen,Appl. Phys. Lett. 64, 3036 (1994).CrossRefADSGoogle Scholar
  18. 18.
    K. E. Goodson, Y. S. Ju, M. Asheshi, O. W. KÄding, M. N. Touzelbaev, Y. K. Leung, and S. S. Wong,ASME Proceedings of the 31st National Heat Transfer Conference,5, 1 (1996).Google Scholar
  19. 19.
    M. Satter and T. Ashworth, inThermal Conductivity, T. Ashworth and D. R. Smith, eds. (Plenum, New York, 1984), pp. 641–650.Google Scholar
  20. 20.
    T. Fletcher,J. Heat Transfer 110, 1059 (1988).CrossRefGoogle Scholar
  21. 21.
    C. V. Madhusudana and L. S. Fletcher,Nucl. Sci. Eng. 83, 327 (1983).Google Scholar
  22. 22.
    J. M. Ochterbeck, G. P. Peterson, and L. S. Fletcher,J. Heat Transfer 114, 21 (1992).Google Scholar
  23. 23.
    P. E. Phelan and M. M. G. Nejhad,J. Electron. Packaging 116, 249(1994).Google Scholar
  24. 24.
    A. Frankel, M. A. Saifi, T. Venkatesan, P. England, X. D. Wu, and A. Imam,J. Appl. Phys. 67, 3054 (1990).CrossRefADSGoogle Scholar
  25. 25.
    C. G. Levy, S. E. Etemad, and A. Imam,Appl. Phvs. Lett. 60, 126(1992).CrossRefADSGoogle Scholar
  26. 26.
    M. I. Flik, P. E. Phelan, and C. L, Tien,Cryogenics 30, 1118 (1990).CrossRefGoogle Scholar
  27. 27.
    Y. Suntao. C. Binjiang, E. E. Hellstrom. E. Stiers, and J. M. Pfotenhauer,IEEE Trans. Appl. Supercond. 5, 1471 (1995).CrossRefGoogle Scholar
  28. 28.
    R. E. Peterson and A. C. Anderson.J. Low Temp. Phys. 11, 639(1973).CrossRefADSGoogle Scholar
  29. 29.
    S. Sahling, J. Engert, A. Gladeen, and R. Knrom,J. Low Temp. Phys. 45. 457 (1981).CrossRefADSGoogle Scholar
  30. 30.
    M. A. Zelikman and B. S. Spivak.Sov. Plys. JETP 49, 377 (1979).ADSGoogle Scholar
  31. 31.
    K. H. Yoo and A. C. Anderson. “Thermal Impedance to Normal and Superconducting Metals,”J. Low Temp. Phys. 63. 269(1986).CrossRefADSGoogle Scholar
  32. 32.
    B. S. Papk and Y. Narahara,J. Phys. Soc. Jpn. 30, 760 (1971).CrossRefADSGoogle Scholar
  33. 33.
    D. Dimitrov, B. Guevezov, B. Terzijska, and V. Kovachev,Cryogenics 30, 348 (1990).CrossRefGoogle Scholar
  34. 34.
    Jezowski and Klamut,Studies of High-Temperature Superconductors, Vol. 4 (Nova Science Publishers, 1990).Google Scholar
  35. 35.
    S. Hagen, Z. Wang, and N. Pong,Phvs. Rev. B 40, 9389 (1994).CrossRefADSGoogle Scholar
  36. 36.
    M. M. Yovanovich. inProgress in Aeronautics and Astronautics Spacecraft Radiative Heat Transfer and Temperature Control, Vol. 83, T. E. Horton, ed. (MIT Press, Cambridge, Massachusetts, 1982), pp. 83 95.Google Scholar
  37. 37.
    A. Majumdar,J. Heat Transfer 113. 797 (1991).CrossRefGoogle Scholar
  38. 38.
    F. Gompf, B. Renker, and E. Gering,Phvsica C 153-155, 274 (1988).CrossRefADSGoogle Scholar
  39. 39.
    J. D. N. Cheeke, H. Ettinger, and B. Hebral,Can. J. Phvs. 54, 1749(1976).ADSGoogle Scholar
  40. 40.
    Z. M. Zhang and A. Frenkel,J. Supercond. 7, 871 (1994).CrossRefADSGoogle Scholar
  41. 41.
    M. Cardona,J. Mol. Struc. 292, 255 (1993).CrossRefADSGoogle Scholar
  42. 42.
    D. Mihailovic and I. Poberas,J. Phvs. Chem. Solids 54, 1315 (1993).CrossRefADSGoogle Scholar
  43. 43.
    G. L. Zhao and J. Callaway.Phys. Rev. B. 50. 9511 (1994).CrossRefADSGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • Ravi S. Prasher
    • 1
  • Patrick E. Phelan
    • 1
  1. 1.Mechanical and Aerospace EngineeringArizona State UniversityTempeArizona

Personalised recommendations