Journal of Solution Chemistry

, Volume 26, Issue 6, pp 551–560 | Cite as

Apparent molar volumes and heat capacities of aqueous solutions of 6,6,9-trimethyladenine and 6,6-dimethyladenine at 25°C, 35°C, and 45°C

  • A. Zielenkiewicz
  • M. Wszelaka-Rylik


Experimental data for aqueous solutions of 6,6,9-trimethyladenine at concentrations from 0.006 to 0.020 molal is provided from differential scanning adiabatic calorimetry, batch calorimetry, and densimetry. The data show nonlinear variations of apparent molar volumes and heat capacities with temperature and concentration. The properties of aqueous solutions of 6,6-dimethyladenine investigated over a similar range of concentration present similar behavior as those of other purine derivatives.

Key Words

Apparent molar volume apparent molar heat capacity 6,6-dimethyladenine 6,6,9-trimethyladenine 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Vogel, ed., Nucleic Acid Protein Recognition, (Academic Press, New York, 1977).Google Scholar
  2. 2.
    J. D. Engel and P. H. von Hippel,J. Biol. Chem. 253, 927 (1978).Google Scholar
  3. 3.
    P. O. P. Ts’o, ed.,Basic Principles of Nucleic Acid Chemistry, Vol. 1, (Academic Press, New York, 1974) p. 537.Google Scholar
  4. 4.
    E. Plesiewicz, E. Stcepień, K. Bolewska, and K. L. Wierzchowski,Biophys. Chem. 4, 131 (1976).CrossRefGoogle Scholar
  5. 5.
    P. O. P. Ts’o, I. S. Melvin, and A. C. Olson,J. Am. Chem. Soc. 85, 1289 (1963).CrossRefGoogle Scholar
  6. 6.
    P. O. P. Ts’o and S. I. Chan,J. Am. Chem. Soc. 86, 4176 (1964).CrossRefGoogle Scholar
  7. 7.
    D. Guttman and T. Higuchi,J. Am. Pharm. Assoc. 46, 4 (1957).Google Scholar
  8. 8.
    P. R. Stoesser and S. J. Gill,J. Phys. Chem. 71, 564 (1967).CrossRefGoogle Scholar
  9. 9.
    S. J. Gill, M. Downing, and G. F. Sheats,Biochemistry 6, 272 (1967).CrossRefGoogle Scholar
  10. 10.
    L. P. Vickers and G. K. Ackers,Archives of Biochem. and Biophys. 174, 747 (1976).CrossRefGoogle Scholar
  11. 11.
    M. G. Marenchic and J. M. Sturtevant,J. Phys. Chem. 77, 544 (1973).CrossRefGoogle Scholar
  12. 12.
    H. Lönnberg, J. Ylikoski, and A. Vesala,J. Am. Chem. Soc. Faraday Trans. 80, 2439 (1984).CrossRefGoogle Scholar
  13. 13.
    T. H. Lilley, H. Linsdell, and A. Maeste,J. Chem. Soc. Faraday Trans. 88, 2865 (1992).CrossRefGoogle Scholar
  14. 14.
    A. Zielenkiewicz, M. Dramiński, G. Roux-Desgranges, A. H. Roux, I. Kulis, J.-P. E. Grolier, and W. Zielenkiewicz,Bull. Polish Acad. Sci. Chem. 40, 203 (1992).Google Scholar
  15. 15.
    A. Zielenkiewicz, W. Zielenkiewicz, and S. Malanowski,Thermochimica Acta 74, 95 (1984).CrossRefGoogle Scholar
  16. 16.
    P. L. Privalov, V. V. Plotnikov, and V. V. Filimonov,J. Chem. Thermodynamics 7, 41 (1975).CrossRefGoogle Scholar
  17. 17.
    A. Zielenkiewicz, K. Busserolles, G. Roux-Desgranges, A. H. Roux, J.-P. E. Grolier, and W. Zielenkiewicz,J. Solution Chem. 24, 623 (1995).CrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • A. Zielenkiewicz
    • 1
  • M. Wszelaka-Rylik
    • 1
  1. 1.Institute of Physical ChemistryPolish Academy of SciencesWarsawPoland

Personalised recommendations