Plasma Chemistry and Plasma Processing

, Volume 17, Issue 3, pp 353–370 | Cite as

Heat transfer in RF plasma sintering: Modeling and experiments

  • N. P. Tandian
  • E. Pfender


The mechanisms of heat transfer from an argon RF plasma, generated in a water-cooled quartz tube, to a sintering sample immersed into the plasma and to the walls of the plasma torch have been studied both analytically and experimentally for pressures from 1 to 50 torr. The model, based on the assumption of chemical equilibrium in a two-temperature plasma with rotational symmetry, includes the influence of the magnetic field and of the Knudsen number on the thermal conductivity of the plasma. At pressures below 20 torr heat transfer to the sintering sample is enhanced compared to heat transfer to the wall of the plasma torch. This nonsymmetry is attributed to the Hall parameter and Knudsen number effect. The relative importance of the two effects is a function of the pressure. A comparison with experiments, based on calorimetric and indirect heat transfer measurements for a range of pressures and power levels, indicates satisfactory agreement with analytical predictions, with the exception of larger discrepancies at higher power levels and relatively low pressures. For pressures below 5 torr, the chemical equilibrium assumption becomes questionable, i.e., the sintering model underestimates the heat transfer to the sintering sample.

Key Words

RF plasma sintering reduced pressures effect on heat transfer Hall and Knudsen number effect 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. E. G. Bennett, N. A. Kinnon, and L. S. Williams, “Sintering in gas discharges,”Nature (London) 217, 1287 (1968).CrossRefADSGoogle Scholar
  2. 2.
    C. E. G. Bennett and N. A. Kinnon, “Glow discharge sintering of alumina,” inKinetics of Reactions in Ionic Systems, T. J. Gray and V. D. Frechette, eds., Plenum Press, New York (1969), p. 408.Google Scholar
  3. 3.
    L. G. Cordone and W. E. Martinsen, “Glow discharge apparatus for rapid sintering of Al2O3,”J. Am. Ceram. Soc. 55, 380 (1972).CrossRefGoogle Scholar
  4. 4.
    G. Thomas, J. Freim, and W. E. Martinsen, “Rapid sintering of UO2 in a glow discharge,”Trans. Am. Nucl. Soc. 17, 177 (1973).Google Scholar
  5. 5.
    G. Thomas and J. Freim, “Parametric investigation of the glow discharge technique for sintering UO2,”Trans. Am. Nucl. Soc. 21, 182 (1975).Google Scholar
  6. 6.
    D. L. Johnson and R. R. Rizzo, “Plasma sintering of a-alumina,”Am. Ceram. Soc. Bull. 59, 467 (1980).Google Scholar
  7. 7.
    J. S. Kim and D. L. Johnson, “Plasma sintering of alumina,”Am. Ceram. Soc. Bull. 62, 620 (1983).Google Scholar
  8. 8.
    D. L. Johnson, W. B. Sanderson, J. M. Knowlton, and E. L. Kemer, “Sintering of a-Al2O3 in gas plasmas,”Adv. Ceram. 10, 656 (1985).Google Scholar
  9. 9.
    P. C. Kong, Y. C. Lau, and E. Pfender, “The effects of gas composition and pressure on RF plasma sintering of MgO,”Mater. Res. Soc. Symp. Proc. 98, 371 (1987).Google Scholar
  10. 10.
    J. D. Hansen and D. L. Johnson,The Effect of Pressure on Heat Transfer during Plasma Sintering, Poster, 91st Annual Meeting of the American Ceramic Society (1989).Google Scholar
  11. 11.
    Y. C. Lee and E. Pfender, “Heat transfer analysis of the plasma sintering process,”Mater. Res. Soc. Symp. Proc. 30, 141 (1984).Google Scholar
  12. 12.
    S. H. Paik,Modeling of Low-Pressure RF Plasma Sintering, Ph.D. Thesis, University of Minnesota (1990).Google Scholar
  13. 13.
    N. P. Tandian,Heat Transfer in RF Plasma Sintering: A Modeling and Experimental Study, Ph.D. Thesis, University of Minnesota (1994).Google Scholar
  14. 14.
    J. W. McKelliget and N. El-Keddah,J. Appl. Phys. 64, 2948 (1988).CrossRefADSGoogle Scholar
  15. 15.
    J. Mostaghimi and M. I. Boulos, “Effect of frequency on local thermodynamic equilibrium conditions in an inductively coupled argon plasma at atmospheric pressure,”J. Appl. Phys. 68, 2643 (1990).CrossRefADSGoogle Scholar
  16. 16.
    W. Yu,Modeling of Atomic and Molecular RF Plasmas at Atmospheric Pressure, Master’s Thesis, University of Minnesota (1989).Google Scholar
  17. 17.
    C. T. A. Johnk,Engineering Electromagnetic Fields and Waves, Wiley, New York (1975).Google Scholar
  18. 18.
    C. H. Chang and E. Pfender, “Heat and momentum transport to particulates injected into low-pressure (∼80 mbar) nonequilibrium plasmas,”IEEE Trans. Plasma Sci. 18, 958 (1990).CrossRefADSGoogle Scholar
  19. 19.
    S. Chapman and T. G. Cowling,The Mathematical Theory of Non-Uniform Gases, 2nd edn., Cambridge University Press, London (1953).Google Scholar
  20. 20.
    E. Leveroni and E. Pfender, “A unified approach to plasma-particle heat transfer under non-continuum and non-equilibrium conditions,”Int. J. Heat Mass Transfer,33, 1497 (1990).CrossRefGoogle Scholar
  21. 21.
    D. L. Evans and R. S. Tankin, “Measurement of emission and absorption of radiation by an argon plasma,”Phys. Fluids 10, 1137 (1967).CrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • N. P. Tandian
    • 1
  • E. Pfender
    • 1
  1. 1.Department of Mechanical Engineering and ERC for Plasma-Aided ManufacturingUniversity of MinnesotaMinneapolis

Personalised recommendations