Advertisement

Plasma Chemistry and Plasma Processing

, Volume 17, Issue 2, pp 107–121 | Cite as

Reactions of hydrocarbons in a supersonic vacuum plasma jet

  • H. Pauser
  • C. G. Schwärzler
  • J. Laimer
  • H. Störi
Article

Abstract

The plasma plume of a hydrogen plasma jet used for diamond synthesis is analyzed by a Pitot tube and by mass spectrometry. In the investigated pressure range of 2–10 mbar, supersonic gas velocities with Mach numbers of up to 2 were observed, which decreased with increasing pressure and increasing distance from the nozzle. The injection of the carbon-containing species either at the exit of the jet nozzle or simply into the background gas of the reaction chamber confirmed the importance of recirculation of background gas into the plasma plume. In the case of background injection the rise of the total carbon content in the plume with increasing distance from the nozzle is much slower than in the case of nozzle injection. The results of a numerical model of the hydrocarbon gas-phase reactions in the jet are presented. The model considers the entrainment of background gas into the plasma plume. Two domains along the jet axis can be distinguished. The first one in the vicinity of the nozzle is dominated by methyl radicals, the second one by atomic carbon. Increase of the hydrogen dissociation level results in the broadening of the atomic carbon domain and the rise of C2 far from the nozzle. Background injection of CH4 leads to lower total carbon content in the plume but has little effect on the species distribution along the jet axis.

Key Words

Plasma jet diamond deposition mass spectrometry modeling gas-phase kinetics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Kurihara, K. Sasaki, M. Kawarada, and N. Koshino,Appl. Phys. Lett. 52, 437 (1988).CrossRefADSGoogle Scholar
  2. 2.
    N. Ohtake and M. Yoshikawa,J. Electrochem. Soc. 137, 717 (1990).CrossRefGoogle Scholar
  3. 3.
    D. G. Goodwin,J. Appl. Phys. 74, 6888 (1993).CrossRefADSGoogle Scholar
  4. 4.
    D. G. Goodwin,J. Appl. Phys. 74, 6895 (1993).CrossRefADSGoogle Scholar
  5. 5.
    M. H. Loh and M. A. Cappelli,Surf. Coat. Technol. 54/55, 408 (1992).Google Scholar
  6. 6.
    M. H. Loh and M. A. Cappelli,Diamond Relat. Mater. 2, 454 (1993).CrossRefGoogle Scholar
  7. 7.
    M. A. Cappelli and M. H. Loh,Diamond Relat. Mater. 3, 417 (1994).CrossRefGoogle Scholar
  8. 8.
    S. J. Harris and L. R. Martin,J. Mater. Res. 5, 2313 (1990).CrossRefADSGoogle Scholar
  9. 9.
    S. J. Harris,Appl. Phys. Lett. 56, 2298 (1990).CrossRefADSGoogle Scholar
  10. 10.
    M. Frenklach and K. E. Spear,J. Mater. Res. 3, 133 (1988).CrossRefADSGoogle Scholar
  11. 11.
    M. Frenklach,J. Chem. Phys. 97, 5794 (1992).CrossRefADSGoogle Scholar
  12. 12.
    M. E. Coltrin and D. S. Dandy,J. Appl. Phys. 74, 5803 (1993).CrossRefADSGoogle Scholar
  13. 13.
    J. R. Fincke, W. D. Swank, S. C. Snyder, and D. C. Haggard,Rev. Sci. Instrum. 64, 3585 (1993).CrossRefADSGoogle Scholar
  14. 14.
    J. G. Liebeskind, R. K. Hanson, and M. A. Cappelli, AIAA 93-2530, 29th Joint Propulsion Conference, Monterey, California, June 1993.Google Scholar
  15. 15.
    C. G. Schwärzler, O. Schnabl, J. Laimer, and H. Störi,Plasma Chem. Plasma Process. 16, 173 (1996).CrossRefGoogle Scholar
  16. 16.
    G. N. Abramovich,The Theory of Turbulent Jets, MIT Press, Cambridge, Massachusetts (1963).Google Scholar
  17. 17.
    R. J. Kee, F. M. Rupley, and J. A. Miller, Sandia Report No. SAND 89-8009, Sandia National Laboratories, Livermore, California (1989).Google Scholar
  18. 18.
    R. F. G. Meulenbroeks, A. J. van Beek, A. J. G. van Helvoort, M. C. M. van de Sanden, and D. C. Schram,Phys. Rev. E 49, 4397 (1994).CrossRefADSGoogle Scholar
  19. 19.
    A. E. Lutz, R. J. Kee, and J. A. Miller, Sandia Rep. 87-8248 UC-401, Sandia National Laboratories, Livermore, California (1993).Google Scholar
  20. 20.
    R. F. G. Meulenbroeks, D. C. Schram, M. C. M. van de Sanden, and J. A. M. van der Mullen,Phys. Rev. Lett. 76, 1840 (1996).CrossRefADSGoogle Scholar
  21. 21.
    P. Glarborg, R. J. Kee, J. F. Grcar, and J. A. Miller, Sandia Rep. 86-8209 UC-4, Sandia National Laboratories, Livermore, California (1993).Google Scholar
  22. 22.
    A. H. Shapiro,The Dynamics and Thermodynamics of Compressible Fluid Flow, Wiley, New York (1953), Vol. 1.Google Scholar
  23. 23.
    D. K. Otorbaev, A. J. M. Buuron, N. T. Guerassimov, M. C. M. van de Sanden, and D. C. Schram,J. Appl. Phys. 76, 4499 (1994).CrossRefADSGoogle Scholar
  24. 24.
    D. M. Gruen, C. D. Zuiker, A. R. Krauss, and X. Pan,J. Vac. Sci. Technol. A 13, 1628 (1995).CrossRefADSGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • H. Pauser
    • 1
  • C. G. Schwärzler
    • 1
  • J. Laimer
    • 1
  • H. Störi
    • 1
  1. 1.Institut für Allgemeine PhysikUniversity of TechnologyViennaAustria

Personalised recommendations