Skip to main content
Log in

Reactions of hydrocarbons in a supersonic vacuum plasma jet

  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

The plasma plume of a hydrogen plasma jet used for diamond synthesis is analyzed by a Pitot tube and by mass spectrometry. In the investigated pressure range of 2–10 mbar, supersonic gas velocities with Mach numbers of up to 2 were observed, which decreased with increasing pressure and increasing distance from the nozzle. The injection of the carbon-containing species either at the exit of the jet nozzle or simply into the background gas of the reaction chamber confirmed the importance of recirculation of background gas into the plasma plume. In the case of background injection the rise of the total carbon content in the plume with increasing distance from the nozzle is much slower than in the case of nozzle injection. The results of a numerical model of the hydrocarbon gas-phase reactions in the jet are presented. The model considers the entrainment of background gas into the plasma plume. Two domains along the jet axis can be distinguished. The first one in the vicinity of the nozzle is dominated by methyl radicals, the second one by atomic carbon. Increase of the hydrogen dissociation level results in the broadening of the atomic carbon domain and the rise of C2 far from the nozzle. Background injection of CH4 leads to lower total carbon content in the plume but has little effect on the species distribution along the jet axis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. K. Kurihara, K. Sasaki, M. Kawarada, and N. Koshino,Appl. Phys. Lett. 52, 437 (1988).

    Article  ADS  Google Scholar 

  2. N. Ohtake and M. Yoshikawa,J. Electrochem. Soc. 137, 717 (1990).

    Article  Google Scholar 

  3. D. G. Goodwin,J. Appl. Phys. 74, 6888 (1993).

    Article  ADS  Google Scholar 

  4. D. G. Goodwin,J. Appl. Phys. 74, 6895 (1993).

    Article  ADS  Google Scholar 

  5. M. H. Loh and M. A. Cappelli,Surf. Coat. Technol. 54/55, 408 (1992).

    Google Scholar 

  6. M. H. Loh and M. A. Cappelli,Diamond Relat. Mater. 2, 454 (1993).

    Article  Google Scholar 

  7. M. A. Cappelli and M. H. Loh,Diamond Relat. Mater. 3, 417 (1994).

    Article  Google Scholar 

  8. S. J. Harris and L. R. Martin,J. Mater. Res. 5, 2313 (1990).

    Article  ADS  Google Scholar 

  9. S. J. Harris,Appl. Phys. Lett. 56, 2298 (1990).

    Article  ADS  Google Scholar 

  10. M. Frenklach and K. E. Spear,J. Mater. Res. 3, 133 (1988).

    Article  ADS  Google Scholar 

  11. M. Frenklach,J. Chem. Phys. 97, 5794 (1992).

    Article  ADS  Google Scholar 

  12. M. E. Coltrin and D. S. Dandy,J. Appl. Phys. 74, 5803 (1993).

    Article  ADS  Google Scholar 

  13. J. R. Fincke, W. D. Swank, S. C. Snyder, and D. C. Haggard,Rev. Sci. Instrum. 64, 3585 (1993).

    Article  ADS  Google Scholar 

  14. J. G. Liebeskind, R. K. Hanson, and M. A. Cappelli, AIAA 93-2530, 29th Joint Propulsion Conference, Monterey, California, June 1993.

  15. C. G. Schwärzler, O. Schnabl, J. Laimer, and H. Störi,Plasma Chem. Plasma Process. 16, 173 (1996).

    Article  Google Scholar 

  16. G. N. Abramovich,The Theory of Turbulent Jets, MIT Press, Cambridge, Massachusetts (1963).

    Google Scholar 

  17. R. J. Kee, F. M. Rupley, and J. A. Miller, Sandia Report No. SAND 89-8009, Sandia National Laboratories, Livermore, California (1989).

  18. R. F. G. Meulenbroeks, A. J. van Beek, A. J. G. van Helvoort, M. C. M. van de Sanden, and D. C. Schram,Phys. Rev. E 49, 4397 (1994).

    Article  ADS  Google Scholar 

  19. A. E. Lutz, R. J. Kee, and J. A. Miller, Sandia Rep. 87-8248 UC-401, Sandia National Laboratories, Livermore, California (1993).

  20. R. F. G. Meulenbroeks, D. C. Schram, M. C. M. van de Sanden, and J. A. M. van der Mullen,Phys. Rev. Lett. 76, 1840 (1996).

    Article  ADS  Google Scholar 

  21. P. Glarborg, R. J. Kee, J. F. Grcar, and J. A. Miller, Sandia Rep. 86-8209 UC-4, Sandia National Laboratories, Livermore, California (1993).

  22. A. H. Shapiro,The Dynamics and Thermodynamics of Compressible Fluid Flow, Wiley, New York (1953), Vol. 1.

    Google Scholar 

  23. D. K. Otorbaev, A. J. M. Buuron, N. T. Guerassimov, M. C. M. van de Sanden, and D. C. Schram,J. Appl. Phys. 76, 4499 (1994).

    Article  ADS  Google Scholar 

  24. D. M. Gruen, C. D. Zuiker, A. R. Krauss, and X. Pan,J. Vac. Sci. Technol. A 13, 1628 (1995).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pauser, H., Schwärzler, C.G., Laimer, J. et al. Reactions of hydrocarbons in a supersonic vacuum plasma jet. Plasma Chem Plasma Process 17, 107–121 (1997). https://doi.org/10.1007/BF02766810

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02766810

Key Words

Navigation