Advertisement

Russian Physics Journal

, Volume 41, Issue 2, pp 142–146 | Cite as

Computational formulas of the semiempirical theory of intensities in harmonic spectroscopy

  • M. D. Él’kin
  • K. V. Berezin
  • O. V. Pulin
  • O. S. Shaturnaya
Optics And Spectroscopy

Abstract

A procedure is presented for obtaining computational formulas of the semiempirical theory of intensities within the framework of the vibrational-rotational model of a rigid polyatomic molecule, using the natural vibrational coordinates to describe the nuclear subsystem. An analysis is made of the contribution of the mechanical, kinematic, and electrooptical anharmonicity and vibrational-rotational interaction to the computational formula of harmonic spectroscopy. The mathematical tools of tensor analysis were used to describe the intramolecular dynamics.

Keywords

Dipole Moment Polyatomic Molecule Computational Formula Contact Transformation Laboratory Coordinate System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Sivin, Molecular Vibrations and Root-Mean-Square Amplitudes [in Russian], Moscow (1971).Google Scholar
  2. 2.
    M. V. Vol’kenshtein, L. A. Gribov, M. A. El’yashevich, and B. I. Stepanov, Molecular Vibrations [in Russian], Nauka, Moscow (1972).Google Scholar
  3. 3.
    P. A. Braun and A. A. Kiselev, Introduction to the Theory of Molecular Spectra [in Russian], Izd. Leningr. Gos. Univ., Leningrad (1983).Google Scholar
  4. 4.
    L. A. Gribov and N. I. Prokof’eva, Opt. Spektrosk.,45, No. 5, 899–902 (1978).Google Scholar
  5. 5.
    M. D. Él’kin, Opt. Spektrosk.,54, No. 5, 895–898 (1983).Google Scholar
  6. 6.
    V. I. Berezin and M. D. Él’kin, Zh. Prikl. Spektrosk.,55, No. 1, 69–73 (1991).Google Scholar
  7. 7.
    V. I. Berezin and M. D. Él’kin, Zh. Prikl. Spektrosk.,55, No. 2, 225–229 (1991).Google Scholar
  8. 8.
    V. I. Berezin and M. D. Él’kin, J. Mol. Struct.,272, 95–109 (1992).CrossRefGoogle Scholar
  9. 9.
    M. D. Él’kin, V. F. Pulin, L. A. Evseeva, and V. I. Vakhlyueva, Izv. Vyssh. Uchebn. Zaved., Fiz., No. 9, 7–13 (1996).Google Scholar
  10. 10.
    V. I. Berezin and M. D. Él’kin, Zh. Prikl. Spektrosk.,57, No. 3–4, 221–226 (1992).Google Scholar
  11. 11.
    V. I. Berezin, Author’s Abstract of Doctoral Dissertation [in Russian], Saratov (1984).Google Scholar
  12. 12.
    R. D. Amos,124, No. 4, 376–381 (1986) [sic].Google Scholar
  13. 13.
    Y. Yamaguchi, M. Frisch, and J. Gaw, J. Chem. Phys.,84, No. 12, 2262–2278 (1986).CrossRefADSGoogle Scholar
  14. 14.
    L. S. Mayants and B. S. Averbukh, Theory and Calculation of Intensities in Molecular Vibrational Spectra [in Russian], Moscow (1971).Google Scholar
  15. 15.
    A. Rapprecht, J. Mol. Spectr.,89, 356–386 (1981).CrossRefADSGoogle Scholar
  16. 16.
    G. Amat, H. H. Nielsen, and G. Torrago, Rotation-Vibration of Polyatomic Molecules, New York (1971).Google Scholar
  17. 17.
    M. D. Él’kin, Opt. Spektrosk.,57, No. 3, 561–564 (1984).Google Scholar
  18. 18.
    M. D. Él’kin, Zh. Strukt. Khim.,27, No. 5, 42–46 (1986).Google Scholar
  19. 19.
    M. D. Él’kin, É. K. Kosterina, and K. V. Berezin, Zh. Prikl. Spektrosk.,61, No. 1–2, 28–33 (1994).Google Scholar
  20. 20.
    M. D. Él’kin, É. K. Kosterina, and K. V. Berezin, Opt. Spektrosk.,78, No. 2, 221–224 (1995)Google Scholar
  21. 21.
    M. D. Él’kin, V. F. Pulin, V. I. Vakhlyeva, and M. N. Sokolov, Zh. Prikl. Spektrosk.,63, No. 3, 375–378 (1996).Google Scholar

Copyright information

© Plenum Publishing Corporation 1998

Authors and Affiliations

  • M. D. Él’kin
  • K. V. Berezin
  • O. V. Pulin
  • O. S. Shaturnaya

There are no affiliations available

Personalised recommendations