Plasmas and Polymers

, Volume 2, Issue 3, pp 199–224 | Cite as

Mechanisms of oxygen- and argon-RF-plasma-induced surface chemistry of cellulose

  • Z. Q. Hua
  • R. Sitaru
  • F. Denes
  • R. A. Young


Pure cellulose samples were Ar- and O2-RF-plasma treated under various external plasma parameter conditions. Plasma induced macromolecular chain and pyranosidic ring cleavage mechanisms are discussed based on survey and high resolution ESCA and ATR-FTIR analysis of cellulose, discharge-exposed cellulose, and discharge-exposed and TFAA and PFPH-derivatized cellulose samples. Analyses have also been made of bothin situ andex situ post plasma oxidation reactions. The new plasma created functionalities were identified and their relative ratios were related to plasma parameters. It was found that Ar plasma treatments initiate reactions mainly associated with the cleavage of C1–C2 linkages leading to the formation of C=O and O-CO-O groups, while O2-plasma treatments are associated with more intense pyranosidic ring (C-O-C bonds) splitting mechanisms. As a result of our detailed investigation of the high resolution C1s spectra of cellulose and carbohydrates we have reassigned the nonequivalent carbon bond affiliation (C-OH, C-O-C, and C-C) at 285–287 eV.

Key Words

Plasma chemical derivatization carbohydrates cellulose 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. A. I. Goring,Pulp Paper Mag. (Canada),68, T-372 (1967).Google Scholar
  2. 2.
    C. Y. Kim, G. Suranyi, and D. A. I. Goring,J. Polym. Sci. C 30, 553 (1970).Google Scholar
  3. 3.
    R. E. Greene,Tappi 48, 80A (1965).Google Scholar
  4. 4.
    P. F. Brown and J. W. Swanson,Tappi,54, 2012 (1971).Google Scholar
  5. 5.
    R. B. Stone and J. R. Barrett,J. Text. Bull. 88, 65 (1962).Google Scholar
  6. 6.
    W. J. Thorsen,Text. Res. J. 41, 455 (1971).Google Scholar
  7. 7.
    A. Sawatari, Y. Hayashi, and T. Kurihara,Cellulose, Structural and Functional Aspects, J. F. Kennedyet al. (eds.), Ellis Horwood Ltd., Chichester, (1989).Google Scholar
  8. 8.
    P. F. Brown and J. W. Swanson,Tappi,54, 2012 (1971).Google Scholar
  9. 9.
    W. J. Thorsen,Text. Res. J., April (1971).Google Scholar
  10. 10.
    G. M. Abbott and G. A. Robinson,Text. Res. J. March (1977).Google Scholar
  11. 11.
    A. Venkateswaran and R. L. Desai,J. Appl. Polym. Sci. 22, 3185 (1978).CrossRefGoogle Scholar
  12. 12.
    M. N. Belgacem, P. Bataille, and S. Sapieha,J. Appl. Poly. Sci. 53, 379 (1994).CrossRefGoogle Scholar
  13. 13.
    I. Sakat, M. Morita, N. Tsuruta, and K. Morita,J. Appl. Polym. Sci. 49, 1251 (1993).CrossRefGoogle Scholar
  14. 14.
    X. Tu, R. A. Young, and F. Denes,Cellulose,1, 87 (1994).CrossRefGoogle Scholar
  15. 15.
    F. Denes, Z. Q. Hua, E. Barrios, and R. A. Young,Pure Appl. Chem. A32, 1405 (1995).Google Scholar
  16. 16.
    D. L. Cho and E. Sjoblom,J. Appl. Polym. Sci.: Appl. Polymer Symp. 46, 461 (1990).CrossRefGoogle Scholar
  17. 17.
    S. Sapieha, C. A. Ferguson, R. P. Beatson, and M. R. Wertheimer,Plasma Chem. Plasma Proc. 9, 225 (1989).CrossRefGoogle Scholar
  18. 18.
    F. Denes and R. A. Young,Proceedings of Wood Adhesives 1995 Conference, Portland, Oregon (1996), pp. 61–74.Google Scholar
  19. 19.
    C. M. G. Carlson, G. Strom, and G. Annergren,Nordic Pulp and Paper Research Journal,1, 17 (1995).CrossRefGoogle Scholar
  20. 20.
    C. M. G. Carlson, G. Strom, I. Eriksson, and E. Lindstrom,Nordic Pulp and Paper Research Journal,9, 72 (1994).CrossRefGoogle Scholar
  21. 21.
    C. M. Gilbert and G. Strom,Langmuir,7, 2492 (1991).CrossRefGoogle Scholar
  22. 22.
    C. M. G. Carlson and K. S. Johansson,Surface and Interface Analysis,17, 551 (1991).CrossRefGoogle Scholar
  23. 23.
    J. M. Felix, C. M. G. Carlson, and P. Gatenholm,J. Adhesion Sci. Technol. 8, 163 (1994).CrossRefGoogle Scholar
  24. 24.
    D. Briggs,J. Adhesion,13, 287 (1982).CrossRefGoogle Scholar
  25. 25.
    T. P. Tougas and W. G. Collier,Anal. Chem. 59, 2269 (1987).CrossRefGoogle Scholar
  26. 26.
    D. Brigs and H. S. Munro,Polymer Commun. 28, 307 (1987).Google Scholar
  27. 27.
    T. H. Ying, A. M. Sarmadi, C. E. C. A. Hop, and F. Denes,J. Appl. Polym. Sci. 55, 1537 (1995).CrossRefGoogle Scholar
  28. 28.
    F. Denes, Z. Q. Hua, E. Barrios, J. Evans, and R. A. Young,Macromol. Sci., Pure Appl. Chem. A32, 1405 (1995).CrossRefGoogle Scholar
  29. 29.
    A. A. Adnot, J. L. Grandmaison, S. Kaliguine, and J. Doucet,Cell. Chem. Technol. 21, 483 (1987).Google Scholar
  30. 30.
    M. N. Belgacem, G. Czeremuszkin, S. Sapieha, and A. Gandini,Cellulose,2, 145 (1995).CrossRefGoogle Scholar
  31. 31.
    S. Tasker, J. P. S. Badyal, S. C. E. Backson, and R. W. Richards,Polymer,35, 4717 (1994).CrossRefGoogle Scholar
  32. 32.
    G. Beamson and D. Briggs,High Resolution XPS of Organic Polymers, The Scienta ESCA 300 Database, John Wiley and Sons, Chichester, New York, Brisbane, Toronto, Singapore (1992).Google Scholar
  33. 33.
    G. M. Dorris and D. G. Gray,Cell. Chem. and Technol. 12, 9, 721 (1978).Google Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • Z. Q. Hua
    • 1
  • R. Sitaru
    • 1
  • F. Denes
    • 1
  • R. A. Young
    • 1
    • 2
  1. 1.Engineering Research Center for Plasma-Aided ManufacturingUniversity of Wisconsin-MadisonMadison
  2. 2.Department of ForestryUniversity of Wisconsin-MadisonMadison

Personalised recommendations