Skip to main content
Log in

Mechanisms of oxygen- and argon-RF-plasma-induced surface chemistry of cellulose

  • Published:
Plasmas and Polymers

Abstract

Pure cellulose samples were Ar- and O2-RF-plasma treated under various external plasma parameter conditions. Plasma induced macromolecular chain and pyranosidic ring cleavage mechanisms are discussed based on survey and high resolution ESCA and ATR-FTIR analysis of cellulose, discharge-exposed cellulose, and discharge-exposed and TFAA and PFPH-derivatized cellulose samples. Analyses have also been made of bothin situ andex situ post plasma oxidation reactions. The new plasma created functionalities were identified and their relative ratios were related to plasma parameters. It was found that Ar plasma treatments initiate reactions mainly associated with the cleavage of C1–C2 linkages leading to the formation of C=O and O-CO-O groups, while O2-plasma treatments are associated with more intense pyranosidic ring (C-O-C bonds) splitting mechanisms. As a result of our detailed investigation of the high resolution C1s spectra of cellulose and carbohydrates we have reassigned the nonequivalent carbon bond affiliation (C-OH, C-O-C, and C-C) at 285–287 eV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. A. I. Goring,Pulp Paper Mag. (Canada),68, T-372 (1967).

  2. C. Y. Kim, G. Suranyi, and D. A. I. Goring,J. Polym. Sci. C 30, 553 (1970).

    Google Scholar 

  3. R. E. Greene,Tappi 48, 80A (1965).

  4. P. F. Brown and J. W. Swanson,Tappi,54, 2012 (1971).

    Google Scholar 

  5. R. B. Stone and J. R. Barrett,J. Text. Bull. 88, 65 (1962).

    Google Scholar 

  6. W. J. Thorsen,Text. Res. J. 41, 455 (1971).

    Google Scholar 

  7. A. Sawatari, Y. Hayashi, and T. Kurihara,Cellulose, Structural and Functional Aspects, J. F. Kennedyet al. (eds.), Ellis Horwood Ltd., Chichester, (1989).

    Google Scholar 

  8. P. F. Brown and J. W. Swanson,Tappi,54, 2012 (1971).

    Google Scholar 

  9. W. J. Thorsen,Text. Res. J., April (1971).

  10. G. M. Abbott and G. A. Robinson,Text. Res. J. March (1977).

  11. A. Venkateswaran and R. L. Desai,J. Appl. Polym. Sci. 22, 3185 (1978).

    Article  Google Scholar 

  12. M. N. Belgacem, P. Bataille, and S. Sapieha,J. Appl. Poly. Sci. 53, 379 (1994).

    Article  Google Scholar 

  13. I. Sakat, M. Morita, N. Tsuruta, and K. Morita,J. Appl. Polym. Sci. 49, 1251 (1993).

    Article  Google Scholar 

  14. X. Tu, R. A. Young, and F. Denes,Cellulose,1, 87 (1994).

    Article  Google Scholar 

  15. F. Denes, Z. Q. Hua, E. Barrios, and R. A. Young,Pure Appl. Chem. A32, 1405 (1995).

    Google Scholar 

  16. D. L. Cho and E. Sjoblom,J. Appl. Polym. Sci.: Appl. Polymer Symp. 46, 461 (1990).

    Article  Google Scholar 

  17. S. Sapieha, C. A. Ferguson, R. P. Beatson, and M. R. Wertheimer,Plasma Chem. Plasma Proc. 9, 225 (1989).

    Article  Google Scholar 

  18. F. Denes and R. A. Young,Proceedings of Wood Adhesives 1995 Conference, Portland, Oregon (1996), pp. 61–74.

    Google Scholar 

  19. C. M. G. Carlson, G. Strom, and G. Annergren,Nordic Pulp and Paper Research Journal,1, 17 (1995).

    Article  Google Scholar 

  20. C. M. G. Carlson, G. Strom, I. Eriksson, and E. Lindstrom,Nordic Pulp and Paper Research Journal,9, 72 (1994).

    Article  Google Scholar 

  21. C. M. Gilbert and G. Strom,Langmuir,7, 2492 (1991).

    Article  Google Scholar 

  22. C. M. G. Carlson and K. S. Johansson,Surface and Interface Analysis,17, 551 (1991).

    Article  Google Scholar 

  23. J. M. Felix, C. M. G. Carlson, and P. Gatenholm,J. Adhesion Sci. Technol. 8, 163 (1994).

    Article  Google Scholar 

  24. D. Briggs,J. Adhesion,13, 287 (1982).

    Article  Google Scholar 

  25. T. P. Tougas and W. G. Collier,Anal. Chem. 59, 2269 (1987).

    Article  Google Scholar 

  26. D. Brigs and H. S. Munro,Polymer Commun. 28, 307 (1987).

    Google Scholar 

  27. T. H. Ying, A. M. Sarmadi, C. E. C. A. Hop, and F. Denes,J. Appl. Polym. Sci. 55, 1537 (1995).

    Article  Google Scholar 

  28. F. Denes, Z. Q. Hua, E. Barrios, J. Evans, and R. A. Young,Macromol. Sci., Pure Appl. Chem. A32, 1405 (1995).

    Article  Google Scholar 

  29. A. A. Adnot, J. L. Grandmaison, S. Kaliguine, and J. Doucet,Cell. Chem. Technol. 21, 483 (1987).

    Google Scholar 

  30. M. N. Belgacem, G. Czeremuszkin, S. Sapieha, and A. Gandini,Cellulose,2, 145 (1995).

    Article  Google Scholar 

  31. S. Tasker, J. P. S. Badyal, S. C. E. Backson, and R. W. Richards,Polymer,35, 4717 (1994).

    Article  Google Scholar 

  32. G. Beamson and D. Briggs,High Resolution XPS of Organic Polymers, The Scienta ESCA 300 Database, John Wiley and Sons, Chichester, New York, Brisbane, Toronto, Singapore (1992).

    Google Scholar 

  33. G. M. Dorris and D. G. Gray,Cell. Chem. and Technol. 12, 9, 721 (1978).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Paper based on the results presented during the workshop of the Engineering Research Center for Plasma-Aided Manufacturing held in Madison, Wisconsin, in Spring 1996.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hua, Z.Q., Sitaru, R., Denes, F. et al. Mechanisms of oxygen- and argon-RF-plasma-induced surface chemistry of cellulose. Plasma Pol 2, 199–224 (1997). https://doi.org/10.1007/BF02766154

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02766154

Key Words

Navigation