Advertisement

Israel Journal of Mathematics

, Volume 66, Issue 1–3, pp 364–368 | Cite as

A combinatorial proof of the Borsuk-Ulam antipodal point theorem

  • Benjamin Weiss
Article
  • 80 Downloads

Abstract

We give a proof of Tucker’s Combinatorial Lemma that proves the fundamental nonexistence theorem: There exists no continuous map fromB n toS n − 1 that maps antipodal points of∂B n to antipodal points ofS n − 1.

Keywords

Chromatic Number Interior Vertex Antipodal Point Combinatorial Proof Positive Half 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [B]
    I. Baranyi,A short proof of Kneser’s conjecture, J. Comb. Theory, Ser. A25 (1978), 325–326.CrossRefGoogle Scholar
  2. [DS]
    L. Dubins and G. Schwarz,Equidis continuity of Borsuk — Ulam functions, Pacific J. Math.95 (1981), 51–59.MATHMathSciNetGoogle Scholar
  3. [F]
    Ky Fan,A generalization of Tucker’s combinatorial lemma with topological applications, Ann. of Math.56 (1952), 431–437.CrossRefMathSciNetGoogle Scholar
  4. [L]
    S. Lefschetz,Introduction to Topology, Princeton University Press, 1949.Google Scholar
  5. [Lo]
    L. Lovász,Kneser’s conjecture, chromatic number and homotopy, J. Comb. Theory, Ser. A25 (1978), 319–324.MATHCrossRefGoogle Scholar
  6. [T]
    A. W. Tucker,Some topological properties of disk and sphere, Proceedings of First Canadian Mathematical Congress, Toronto University Press, 1946, pp. 285–309.Google Scholar

Copyright information

© The Weizmann Science Press of Israel 1989

Authors and Affiliations

  • Benjamin Weiss
    • 1
  1. 1.Institute of MathematicsThe Hebrew University of JerusalemJerusalemIsrael

Personalised recommendations