Israel Journal of Mathematics

, Volume 66, Issue 1–3, pp 9–22 | Cite as

The work of Alexander Zabrodsky 1936–1986

  • John Harper


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography of Alexander Zabrodsky I. Ph.D. Dissertation

  1. 1.
    On the structure of the cohomology of H-spaces, Princeton University, 1967. Supervisors: Professors N. Steenrod and W. Browder. The dissertation in its original form was not published. An improved and generalized version was published as [5] below.Google Scholar

II. Book

  1. 2.
    Hopf Spaces, North-Holland Math. Studies 22, North-Holland, Amsterdam, 1976, 223 pp.Google Scholar

III. Publications

  1. 3.
    A remark on independent functions, Bull. Res. Counc. Isr.9F (1960), 135–139.MathSciNetGoogle Scholar
  2. 4.
    Covering spaces of paracompact spaces, Pac. J. Math.14 (1964), 1489–1503.MATHMathSciNetGoogle Scholar
  3. 5.
    Implications in the cohomology of H-spaces, III, J. Math.14 (1970), 363–375.MATHMathSciNetGoogle Scholar
  4. 6.
    Homotopy associativity and finite CW complexes, Topology9 (1970), 121–128.MATHCrossRefMathSciNetGoogle Scholar
  5. 7.
    On cohomology with limited torsion, Isr. J. Math.8 (1970), 159–164.MATHMathSciNetGoogle Scholar
  6. 8.
    Cohomology operations and homotopy commutativity, Springer Lecture Notes in Math.168 (1970), 308–317.MathSciNetGoogle Scholar
  7. 9.
    On sphere extension of classical groups, Symp. Pure Math.22 (1971), 279–283.MathSciNetGoogle Scholar
  8. 10.
    Secondary cohomology operations in the module of indecomposable, Summer Inst. on Algebraic Topology, Aarhus 1970.Google Scholar
  9. 11.
    On spherical classes in the cohomology of H-spaces, Springer Lecture Notes in Math.196 (1970), 25–33.MathSciNetGoogle Scholar
  10. 12.
    Secondary operations in the cohomology of H-spaces, Ill. J. Math.15 (1971), 648–655.MATHMathSciNetGoogle Scholar
  11. 13.
    The classification of H-spaces with three cells. I, Math. Scand.30 (1972), 193–210.MATHMathSciNetGoogle Scholar
  12. 14.
    The classification of H-spaces with three cells. II, Math. Scand.30 (1972), 211–222.MATHMathSciNetGoogle Scholar
  13. 15.
    On the construction of new finite CW H-space, Invent. Math.16 (1972), 260–266.MATHCrossRefMathSciNetGoogle Scholar
  14. 16.
    On the homotopy type of principal classical group bundles over spheres, Isr. J. Math.11 (1972), 315–325.MATHMathSciNetGoogle Scholar
  15. 17.
    On rank 2 mod odd H-spaces, New Developments in Algebraic Topology, London Math. Soc. Lecture Notes #12 (1974), 119–128.MathSciNetGoogle Scholar
  16. 18.
    On the genus of finite dimensional H-spaces, Comment. Math. Helv.49 (1974), 48–64.MATHCrossRefMathSciNetGoogle Scholar
  17. 19.
    P-equivalence and homotopy type, Springer Lecture Notes in Math.418 (1974), 161–171.MathSciNetCrossRefGoogle Scholar
  18. 20.
    (with P. May)H* (Sprin(n),Z 2)as a Hopf algebra, J. Pure Appl. Algebra10 (1977), 193–200.CrossRefMathSciNetGoogle Scholar
  19. 21.
    (with P. Hoffman)Thin Lens Spaces, Bull. Can. Math.21 (1978), 31–35.MATHMathSciNetGoogle Scholar
  20. 22.
    (with E. Dror)Unipotency and nilpotency in homotopy equivalences, Topology18 (1979), 187–197.MATHMathSciNetGoogle Scholar
  21. 23.
    Some relations in the mod 3 cohomology of H-spaces, Isr. J. Math.33 (1979), 59–72.MATHCrossRefMathSciNetGoogle Scholar
  22. 24.
    (with G. Cooke and J. Harper)Torsion free mod p H-spaces of low rank, Topology 18 (1979), 349–359.MATHMathSciNetGoogle Scholar
  23. 25.
    Power spaces, mimeographed.Google Scholar
  24. 26.
    Endomorphisms in the homotopy category, Contemp. Math.44 (1985), 227–277.MathSciNetGoogle Scholar
  25. 27.
    On the realization of invariant subgroups ofπ*(X), Trans. Am. Math. Soc.285 (1984), 467–496.MATHCrossRefMathSciNetGoogle Scholar
  26. 28.
    (with J. Aguadé)Algebraic and geometric models for H 0-spaces, Trans. Am. Math. Soc.273 (1982), 181–190.MATHCrossRefGoogle Scholar
  27. 29.
    On George-Cooke’s theory of homotopy and topological actions, Current Trends in Algebraic Topology, Part II, University of Western Ontario, 1982, pp. 313–320.Google Scholar
  28. 30.
    Homotopy actions of nilpotent groups, Contemp. Math.12 (1982), 353–357.MATHGoogle Scholar
  29. 31.
    (with J. Harper)Alteration of H-structures, Contemp. Math.19 (1983), 71–84.MATHMathSciNetGoogle Scholar
  30. 32.
    Cohomology operations and H-spaces, Publicacions, Seccio de Matematiques, Universitat Autonoma de Barcelona26 (1982), 215–243.MATHMathSciNetGoogle Scholar
  31. 33.
    (with J. Harper)H-spaces and self-maps, Springer Lecture Notes in Math.1051 (1983), 371–373.MathSciNetGoogle Scholar
  32. 34.
    On phantom maps and a theorem of H. Miller, Isr. J. Math.58 (1987), 129–143.MATHMathSciNetGoogle Scholar
  33. 35.
    Maps between classifying spaces, inAlgebraic Topology and Algebraic K-Theory, Ann. Math. Studies113 (1987), 228–246.MathSciNetGoogle Scholar
  34. 36.
    (with E. Dror-Farjoun)Homotopy equivalence of diagram of spaces, J. Pure Appl. Algebra41 (1986), 169–182.MATHCrossRefMathSciNetGoogle Scholar
  35. 37.
    (with J. Harper)Evaluating a p-th order cohomology operation, Publicacions Matemátiques32 (1988), 61–78.MATHMathSciNetGoogle Scholar
  36. 38.
    (with E. Dror-Farjoun)Homotopy fixed points, Comment. Math. Helv., to appear.Google Scholar
  37. 39.
    (with E. Dror-Farjoun)Equivariant homotopy spectral sequence, Springer Lecture Notes in Math.1298 (1987), 54–81.MathSciNetGoogle Scholar
  38. 40.
    (with W. Dwyer)Maps between classifying spaces, Springer Lecture Notes in Math.1298 (1987), 106–119.MathSciNetGoogle Scholar
  39. 41.
    (with W. Dwyer)On spaces of functions between classifying spaces, to appear.Google Scholar

Copyright information

© The Weizmann Science Press of Israel 1989

Authors and Affiliations

  • John Harper
    • 1
  1. 1.Department of MathematicsUniversity of RochesterRochesterUSA

Personalised recommendations