Advertisement

Journal of Insect Behavior

, Volume 10, Issue 3, pp 355–363 | Cite as

Humidity-invoked upwind orientation of shore insects (Bambidion obtusidens, coleoptera: Carabidae)

  • W. G. Evans
Article

Abstract

Because insects cannot rely solely on kinetic responses to locate upwind humidity resources, an alternative mechanism involving the perception of windborne humidity fluctuations was investigated. In a wind tunnel, upwind responses of adult shore insects (Bembidion obtusidens Fall, Carabidae, Coleoptera) were invoked by pulsed (1.25-Hz) increases (1.7%) of relative humidity at ambient relative humidities of 32, 42, 52, and 62% but not at 72 and 86%. Conversely, upwind responses to pulsed decreases (1.8%) occurred at 65, 72, and 86% but not at 32, 42, and 52% ambient relative humidities. These results suggest that perception by moist-air and dry-air hygroreceptors of turbulence-induced pulses of moist air or of dry air in their habitat trigger positive anemotactic orientation of these insects to upwind humidity resources.

Key words

Bembidion obtusidens anemotaxis hygroreceptors boundary layer turbulence water vapor transport pulsed stimuli 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altner, H., and Loftus, R. (1985). Ultrastructure and function of thermo-and hygroreceptors.Annu. Rev. Entomol. 30: 273–295.CrossRefGoogle Scholar
  2. Angle, R. P., and Sakiyama, S. K. (1991).Plume Dispersion in Alberta, Alberta Environment, Edmonton, Alberta.Google Scholar
  3. Batschelet, E. (1981).Circular Statistics in Biology, Academic Press, New York.Google Scholar
  4. Buck, A. (1985). The Lyman-alpha absorption hygrometer. InProceedings of the 1985 International Symposium on Moisture and Humidity, Instrument Society of America, Washington, DC, pp. 411–436.Google Scholar
  5. Davis, E. E., and Sokolove, P. G. (1975). Temperature responses of antennal receptors of the mosquito,Aedes aegypti.J. Comp. Physiol. 96: 223–236.CrossRefGoogle Scholar
  6. Epsky, N. D., and Heath, R. R. (1993). Pheromone production by maleAnastrepha suspensa (Diptera: Tephritidae) under natural light cycles in greenhouse studies.Environ. Entomol. 22: 464–469.Google Scholar
  7. Evans, W. G. (1984). Odor-mediated responses ofBembidion obtusidens (Coleoptera: Carabidae) in a wind tunnel.Can. Entomol. 116: 1653–1658.CrossRefGoogle Scholar
  8. Evans, W. G. (1988). Chemically mediated habitat recognition in shore insects.J. Chem. Ecol. 14: 1441–1454.CrossRefGoogle Scholar
  9. Fraenkel, G. S., and Gunn, D. L. (1940).The Orientation of Animals. Kineses, Taxes and Compass Reactions, Clarendon Press, Oxford.Google Scholar
  10. Itoh, T., Yokohari, F., and Tominaga, Y. (1984). Two types of antennal hygro- and thermoreceptive sensilla of the cricket,Gryllus bimaculatus (De Geer).Zool. Sci. 1: 533–543.Google Scholar
  11. Kaissling, K. E. (1986). Temporal characteristics of pheromone receptor cell responses in relation to orientation behaviour of moths. In Payne, T. L., Birch, M. C., and Kennedy, C. E. J. (eds.),Mechanisms in Insect Olfaction, Clarendon, Oxford, pp. 193–199.Google Scholar
  12. Kramer, E. (1986). Turbulent diffusion and pheromone-triggered anemotaxis. In Payne, T. L., Birch, M. C., and Kennedy, E. J. (eds.),Mechanisms in Insect Olfaction, Clarendon, Oxford, pp. 59–67.Google Scholar
  13. Mafra-Neto, A., and Cardé, R. T. (1993). Fine scale structure of pheromone plumes modulates upwind orientation of flying moths.Nature 369: 142.CrossRefGoogle Scholar
  14. Miyake, M., and McBean, G. (1970). On the measurement of vertical humidity transport over land.Boundary-Layer Meteor. 1: 88–101.CrossRefGoogle Scholar
  15. Moore, P. A., Zimmer-Faust, R. K., Bement, S. L., Weissburg, M. J., Parrish, J. M., and Gerhardt, G. A. (1992). Measurement of microscale patchiness in a turbulent aquatic odor plume using a semiconductor-based microprobe.Biol. Bull. 183: 138–142.CrossRefGoogle Scholar
  16. Mordue, W., Goldsworthy, G. J., Brady, J., and Blaney, W. M. (1980).Insect Physiology, Wiley, New York.Google Scholar
  17. Murlis, J. (1986). The structure of odor plumes. In Payne, T. L., Birch, M. C., and Kennedy, C. E. J. (eds.),Mechanisms in Insect Olfaction, Clarendon, Oxford, pp. 27–38.Google Scholar
  18. Murlis, J., Elkinton, J. S., and Cardé, R. T. (1992). Odor plumes and how insects use them.Annu. Rev. Entomol. 37: 505–532.CrossRefGoogle Scholar
  19. Ohtaki, E. (1984). Application of an infrared carbon dioxide and humidity instrument to studies of turbulent transport.Boundary-Layer Meteorol. 29: 85–107.CrossRefGoogle Scholar
  20. Oke, T. R. (1978).Boundary Layer Climates, Methuen, London.Google Scholar
  21. Olszewski, K. (1973). Attempt to determine the horizontal flow of water vapor in the near-earth air layer in the vicinity of Lake Sniardwy.Klimatologia 7: 51–57.Google Scholar
  22. Palmén, E. (1944). Die anemohydrochore Ausbreitung der Insekton als zoogeographischer Faktor.Ann. Zool. Soc. Zool. Bot. Fenn. “Vanamo” 10: 1–262.Google Scholar
  23. Perttunen, V. (1951). The humidity preferences of various carabid species.Ann. Entomol. Fenn. 17: 72–84.Google Scholar
  24. Phelps, G. T., and Pond, S. (1971). Spectra of the temperature and humidity fluctuations and of the fluxes of moisture and sensible heat in the marine boundary layer.J. Atmos. Sci. 28: 918–928.CrossRefGoogle Scholar
  25. Polhemus, J. T. (1985).Shore Bugs (Heteroptera, Hemiptera; Saldidae). A World Overview and Taxonomy of Middle America Forms, The Different Drummer, Englewood, CO.Google Scholar
  26. Rider, N. E., Philip, J. R., and Bradley, E. F. (1963). The horizontal transport of heat and moisture—a micrometeorological study.Q. J. Roy. Meteorol. Soc. 89: 507–531.CrossRefGoogle Scholar
  27. Rosenberg, N. J. (1974).Microclimate. The Biological Environment, Wiley, New York.Google Scholar
  28. Royer, L., and McNeil, J. N. (1993). Effect of relative humidity conditions on responsiveness of European corn borer (Ostrinia nubilalis) males to female sex pheromone in a wind tunnel.J. Chem. Ecol. 19: 61–69.CrossRefGoogle Scholar
  29. Takeuchi, K., Ohtaki, E., and Seo, T. (1980). Turbulent transfer of water vapor over paddy fields.Ber. Ohara Inst. Landw. Biol. 18: 1–30.Google Scholar
  30. Thiele, H. U. (1977).Carabid Beetles in Their Environments, Springer-Verlag, New York.Google Scholar
  31. Tichy, H. (1987). Hygroreceptor identification and response characteristics in the stick insectCarausius morosus.J. Comp. Physiol. A 160: 43–53.CrossRefGoogle Scholar
  32. Tichy, H., and Loftus, R. (1990). Response of moist-air receptor on antenna of the stick insect,Carausius morosus, to step changes in temperature.J. Comp. Physiol. A 166: 507–516.CrossRefGoogle Scholar
  33. Turner, R. P. (1968).Waveform Measurements, Hayden, New York.Google Scholar
  34. Vickers, N. J., and Baker, T. C. (1994). Reiterative responses to single strands of odor promote sustained upwind flight and odor source location by moths.Proc. Natl. Acad. Sci. USA 91: 5756–5760.PubMedCrossRefGoogle Scholar
  35. Wigglesworth, V. B. (1939).The Principles of Insect Physiology, Methuen, London.Google Scholar
  36. Yokohari, F., Tominaga, Y., and Tateda, H. (1982). Antennal hygroreceptors of the honey beeApis mellifera L.Cell Tissue Res. 226: 63–73.PubMedCrossRefGoogle Scholar
  37. Zar, J. H. (1974).Biostatistical Analysis, Prentice-Hall, Englewood Cliffs, NJ.Google Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • W. G. Evans
    • 1
  1. 1.Department of Biological SciencesUniversity of AlbertaEdmontonCanada

Personalised recommendations