Advertisement

Journal of Statistical Physics

, Volume 89, Issue 3–4, pp 777–799 | Cite as

Exact solution of two-species ballistic annihilation with general pair-reaction probability

  • M. J. E. Richardson
Article

Abstract

The reaction processA + B → ∅ is modeled for ballistic reactants on an infinite line with particle velocitiesυ A =c andυ B = -c and initially segregated conditions, i.e., allA particles to the left and allB particles to the right of the origin. Previous models of ballistic annihilation have particles that always react on contact, i.e., pair-reaction probabilityp = 1. The evolutions of such systems are wholly determined by the initial distributions of particles and therefore do not have a stochastic dynamics. However, in this paper the generalization is made to p< 1, allowing particles to pass through each other without necessarily reacting. In this way, theA andB particle domains overlap to form a fluctuating, finitesized reaction zone where the product ∅ is created. Fluctuations are also included in the currents ofA andB particles entering the overlap region, thereby inducing a stochastic motion of the reaction zone as a whole. These two types of fluctuations, in the reactions and particle currents, are characterised by theintrinsic reaction rate, seen in a single system, and theextrinsic reaction rate, seen in an average over many systems. The intrinsic and extrinsic behaviors are examined and compared to the case of isotropically diffusing reactants

Key Words

Ballistic annihilation reaction process reaction zone nonequilibrium Statistical mechanics exactly solved model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    For a recent review see S. Redner inNonequilibrium Statistical Mechanics in One Dimension, ed V. Privman, Cambridge University Press, 1997.Google Scholar
  2. 2.
    R. Kroon, H. Fleurent, and R. Sprik,Phys. Rev. E 47:2462 (1993).CrossRefADSGoogle Scholar
  3. 3.
    D. Toussaint and F. Wilczek,J. Chem. Phys. 78:2642 (1983).CrossRefADSGoogle Scholar
  4. 4.
    Part VII-Experimental results.Nonequilibrium Statistical Mechanics in One Dimension, ed V. Privman, Cambridge University Press, 1997.Google Scholar
  5. 5.
    L. Gálfi and Z. Râcz,Phys. Rev. A 38:3151 (1988).CrossRefADSGoogle Scholar
  6. 6.
    Y. Elskens and H. L. Frisch,Phys. Rev. A 31:3812 (1985).CrossRefADSGoogle Scholar
  7. 7.
    M. Droz, P. A. Rey, L. Frachebourg, and J. Piasecki,Phys. Rev. E 51:5541 (1995).CrossRefADSGoogle Scholar
  8. 8.
    J. Piasecki,Phys. Rev. E 51:5535 (1995).CrossRefADSGoogle Scholar
  9. 9.
    J. Piasecki, P. A. Rey, and M. Droz,Physica 229A:515 (1996).ADSGoogle Scholar
  10. 10.
    P.-A. Rey, M. Droz, and J. Piasecki,Euro. Jour. Phys. (may 1997, to appear).Google Scholar
  11. 11.
    E. Ben-Nairn and S. Redner,J. Phys. A 25:L575 (1992).CrossRefADSGoogle Scholar
  12. 12.
    G. T. Barkema, M. J. Howard, and J. L. Cardy,Phys. Rev. E 53:R2017 (1996).CrossRefADSGoogle Scholar
  13. 13.
    M. Bramson and J. L. Lebowitz,J. Stat. Phys. 65:941 (1991).MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    B. P. Lee and J. Cardy,Phys. Rev. E 50:R3287 (1994).CrossRefADSGoogle Scholar
  15. 15.
    S. Cornell and M. Droz,Phys. Rev. Lett. 70:3824 (1993).CrossRefADSGoogle Scholar
  16. 16.
    M. J. E. Richardson and M. R. Evans,J. Phys. A 30:811 (1997).MATHCrossRefADSGoogle Scholar
  17. 17.
    S. Cornell, M. Droz, and B. Chopard,Phys. Rev. A 44:4826 (1991).CrossRefADSGoogle Scholar
  18. 18.
    M. Araujo, S. Havlin, H. Larralde, and H. E. Stanley,Phys. Rev. Lett. 68:1791 (1992).CrossRefADSGoogle Scholar
  19. 19.
    P. L. Krapivsky,Phys. Rev. E 51:4774 (1995).CrossRefADSGoogle Scholar
  20. 20.
    S. Cornell,Phys. Rev. E 51:4055 (1995).CrossRefADSGoogle Scholar
  21. 21.
    S. A. Janowsky,Phys. Rev. E 51:1858 (1995).CrossRefADSGoogle Scholar
  22. 22.
    I. Ispolatov, P. L. Krapivsky, and S. Redner,Phys. Rev. E 52:2540 (1995).CrossRefADSGoogle Scholar
  23. 23.
    A. Turing,Philos. Trans. Roy. Soc. London Series B 237 :37.Google Scholar
  24. 24.
    S. Sandow and G. Schütz,Europhys. Lett. 26:7 (1994).CrossRefMathSciNetGoogle Scholar
  25. 25.
    S. Sandow,Phys. Rev. E 40:2660 (1994).CrossRefADSGoogle Scholar
  26. 26.
    F. H. L. Essler and V. Rittenberg,J. Phys. A 29:3375 (1996).MATHCrossRefADSMathSciNetGoogle Scholar
  27. 27.
    B. Derrida, M. R. Evans, V. Hakim, and V. Pasquier,J. Phys A 26:1493 (1993).MATHCrossRefADSMathSciNetGoogle Scholar
  28. 28.
    L. C. Biedenharn,J. Phys. A 22:L873 (1989).CrossRefADSMathSciNetGoogle Scholar
  29. 29.
    G. Schütz and E. Domany,J. Stat. Phys. 72:277 (1993).MATHCrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  1. 1.Department of Theoretical PhysicsUniversity of OxfordOxfordUK

Personalised recommendations