Skip to main content
Log in

Frontiers in population ecology of microtine rodents: A pluralistic approach to the study of population ecology

  • Special Feature
  • Published:
Researches on Population Ecology

Abstract

Current challenges for the study of population ecology of microtine rodents are reviewed. Comparisons with other taxonomic groups (other mammals, birds and insects) are given throughout. A major challenge is to link patterns and processes (i.e. mechanisms) better than is the case today. Other major challenges include the furthering of our understanding of the interaction between deterministic and stochastic processes, and as part thereof, the interaction between density-dependent and density-independent processes. The applicability of comparative studies on populations exhibiting different temporal dynamical patterns is, in this connection, emphasized. Understanding spatiotemporal dynamical patterns is another major challenge, not the least from a methodological point of view. Long-term and large-scale ecological data on population dynamics (in space and time) are critical for this purpose. Looking for consistency between hypothesized mechanisms and observed patterns is emphasized as a good platform for further empirical and theoretical work. The intellectual feedback process between different approaches to the study of microtine population ecology (observational studies, experimental manipulative studies, statistical modeling and mathematical modeling) are discussed. We recommend a pluralistic approach (involving both observational and experimental as well as theoretical studies) to the study of small rodent ecology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abe, H. (1976) Population structure and reproductive activity ofClethrionomys rufocanus bedfordiae (Thomas) in a wind shelterbelt of the Ishikari Plain, Hokkaido.Journal of the Mammalogical Society of Japan 7: 17–30.

    Google Scholar 

  • Albon, S. D., T. H. Clutton-Brock and F. E. Guiness (1987) Early development and population dynamics in red deer. II. Density-independent effects and cohort variation.Journal of Animal Ecology 56:69–81.

    Google Scholar 

  • Anderson, S., A. Auquier, W. W. Hauck, D. Oakes, W. Vandaele and H. I. Weisberg (1980)Statistical methods for comparative studies. John Wiley and Sons, New-York.

    Google Scholar 

  • Andreev, A. (1988) The ten year cycle of the willow grouse of lower Kolyma.Oecologia 76: 261–267.

    Google Scholar 

  • Andrewartha, H. G. and L. C. Birch (1954)The distribution and abundance of animals. University of Chicago Press, Chicago.

    Google Scholar 

  • Andrewartha, H. G. and L. C. Birch (1984)The ecological web. University of Chicago Press, Chicago.

    Google Scholar 

  • Atkinson, A. C. (1996) The usefulness of optimum experimental designs.Journal of the Royal Statistical Society B 58: 59–76.

    Google Scholar 

  • Barbour, D. A. (1990) Synchronous fluctuations in spatially separated populations of cyclic forest insects. pp. 339–346.In A. D. Watt, S. R. Leather, M. D. Hunter and N.A. C. Kidd (eds.)Population dynamics of forest insects. Intercept, Andover, Hampshire.

    Google Scholar 

  • Bartlett, M. S. (1970)Stochastic population models. Metheuen & Co Ltd, London.

    Google Scholar 

  • Batzli, G. O. (1996) Population cycles revisited.Trends in Ecology and Evolution 11: 488–489.

    Google Scholar 

  • Berryman, A. A. (1991) Stabilization or regulation: what it all means!Oecologia 86: 140–143.

    Google Scholar 

  • Berryman, A. A. (1992) Vague notions of density-dependence.Oikos 62: 252–254.

    Google Scholar 

  • Bjørnstad, O. N., W. Falck and N. C. Stenseth (1995) A geographic gradient in small rodent density fluctuations: a statistical modelling approach.Proceedings of the Royal Society of London B 262: 127–133.

    Google Scholar 

  • Bjornstad, O. N., N. C. Stenseth and T. Saitoh (1998a) Synchrony and scaling in dynamics of voles and mice in northern Japan.Ecology (in press).

  • Bjørnstad, O. N., N. C. Stenseth, T. Saitoh and O. C. Lingjæerde (1998b) Mapping the regional transition in dynamics ofClethrionomys rufocanus: spectral densities and functional data analysis.Researches on Population Ecology 40: 77–84.

    Google Scholar 

  • Bjornstad, O. N., M. Begon, N. C. Stenseth, W. Falck, S. M. Sait and D. J. Thompson (1998c) Population dynamics of the Indian meal moth: Demographic stochasticity and delayed regulatory mechanisms.Journal of Animal Ecology 67: 110–126.

    Google Scholar 

  • Bondrup-Nielsen, S. (1986) Investigation of spacing behaviour ofClethrionomys gapperi by experimentation.Journal of Animal Ecology 55: 269–280.

    Google Scholar 

  • Box, J. F. (1978)R. A. Fisher, the life of a scientist. John Wiley and Sons, New York.

    Google Scholar 

  • Bujalska, G. (1970) Reproduction stabilizing elements in an island population ofClethrionomys glareolus (Schreber, 1780).Acta Theriologica 15: 381–412.

    Google Scholar 

  • Cappuccino, N. and P. W. Price (1995)Population dynamics. Academic Press, New York.

    Google Scholar 

  • Campbell, M. J. and A. M. Walker (1977) A survey of statistical work on the Mackenzie River series of annual Canadian lynx trappings for the years 1821–1934 and a new analysis.Journal of the Royal Statistical Society A 140: 411–431 and 448–468.

    Google Scholar 

  • Caswell, H. (1988) Theory and models in ecology: a different perspective.Ecological Modelling 43: 33–44.

    Google Scholar 

  • Chan, K.-S., H. Tong and N. C. Stenseth (1998a) Analyzing abundance data from periodically fluctuating rodent populations by threshold models: a nearest neighbour bootstrap approach. (in review).

  • Chan, K.-S., H. Tong and N. C. Stenseth (1998b) Testing for common structure in a panel of threshold models. (in review).

  • Charnov, E. L. and J. P. Finerty (1980) Vole population cycles: a case for kin-selection?Oecologia 45: 1–2.

    Google Scholar 

  • Chitty, D. (1960) Population processes in the vole and the relevance to general theory.Canadian Journal Zoology 38: 99–113.

    Google Scholar 

  • Chitty, D. (1967) The natural selection of self-regulatory behaviour in animal populations.Proceedings of Ecological Society of Australia 2: 51–78.

    Google Scholar 

  • Christian, J. J. (1950) The andro-pituitary system and population cycles in small mammals.Journal of Mammalogy 31: 247–259.

    Google Scholar 

  • Christian, J. J. (1980) Endocrine factors in population regulation. pp. 55–115.In M. N. Cohen, R. S. Malpass and H. G. Klein (eds.)Biosocial mechanisms of population regulation. Yale University Press, New Haven.

    Google Scholar 

  • Clutton-Brock, T. H., M. Major and F. E. Guinness (1985) Population regulation in male and female red deer.Journal of Animal Ecology 54: 831–846.

    Google Scholar 

  • Clutton-Brock, T. H., O. F. Price, S.D. Albon and P.A. Jewell (1991) Persistent instability and population regulation in Soay sheep.Journal of Animal Ecology 60: 593–608.

    Google Scholar 

  • Clutton-Brock, T. H., A. W. Illius, K. Wilson, B. T. Grenfell, A. D. C. MacColl and S. D. Albon (1997) Stability and instability in ungulate populations: an empirical analysis.American Naturalist 149: 195–219.

    Google Scholar 

  • Cockburn, A. (1988)Social behavior in fluctuating populations. Croom Helm, London.

    Google Scholar 

  • Collett, R. (1911/1912)Norges pattedyr (Norwegian mammals). Aschehoug and Company, Kristiania (in Norwegian).

    Google Scholar 

  • Cox, D. R. (1958)Planning of experiments. John Wiley and Sons, New York.

    Google Scholar 

  • Crowcroft, P. (1991)Elton’s ecologist. A history of the bureau of animal populations. The University of Chicago Press, Chicago.

    Google Scholar 

  • Crowley, P. H. (1992) Density dependence, boundedness, and attraction: detecting stability in stochastic systems.Oecologia 90: 246–254.

    Google Scholar 

  • de Roos, A. M., E. McCauley and W. G. Wilson (1991) Mobility versus density-limited predator-prey dynamics on different spatial scales.Proceedings of the Royal Society of London B 246: 117–122.

    Google Scholar 

  • Den Boer, P. J. (1991) Seeing the trees for the wood: random walks or bounded fluctuations of population size?Oecologia 86: 484–491.

    Google Scholar 

  • Den Boer, P. J. and J. Reddingius (1996)Regulation and stabilization paradigms in population ecology. Chapman and Hall, London.

    Google Scholar 

  • Dennis, B. and G. P. Patil (1984) The gamma distribution and weighted multimodal gamma distribution as models of population abundance.Mathematical Biosciences 68: 187–212.

    Google Scholar 

  • Dennis, B., R. A. Desharnais, J. M. Cushing and R. F. Costantino (1997) Transitions in population dynamics: Equilibria to periodic cycles to aperiodic cycles.Journal of Animal Ecology 66: 704–729.

    Google Scholar 

  • Eberhardt, L. L. (1977) Optimal management policies for marine mammals.Wildlife Society Bulletin 5: 162–169.

    Google Scholar 

  • Ellner, S. and P. Turchin (1995) Chaos in noisy world: new methods and evidence from time-series analysis.American Naturalist 154: 343–375.

    Google Scholar 

  • Elton, C. S. (1924) Periodic fluctuations in the numbers of animals: their causes and effects.Journal of Experimental Biology 2: 119–163.

    Google Scholar 

  • Elton, C. S. (1942)Vole, mice and lemmings. Clarendon Press, Oxford.

    Google Scholar 

  • Engen, S. and R. Lande (1996) Population dynamic models generating the lognormal species abundance distribution.Mathematical Biosciences 132: 169–183.

    PubMed  CAS  Google Scholar 

  • Epperson, B. K. and T. Q. Li (1997) Gene dispersal and spatial genetic structure.Evolution 51: 672–681.

    Google Scholar 

  • Falck, W., O. N. BJørnstad and N. C. Stenseth (1995a) Bootstrap estimated uncertainty of the dominant Lyapunov exponent for Holarctic microtine rodents.Proceedings of the Royal Society of London B 261: 159–165.

    CAS  Google Scholar 

  • Falck, W., O. N. Bjørnstad and N. C. Stenseth (1995b) Voles and lemmings. Chaos and uncertainty in fluctuating populations.Proceedings of the Royal Society of London B 262: 363–370.

    Google Scholar 

  • Finerty, J. P. (1980)The population ecology of cycles in small mammals: Mathematical theory and biological fact. Yale University Press, New Haven.

    Google Scholar 

  • Fisher, R. A. (1935)The design of experiments. Oliver and Boyd, Edinburgh.

    Google Scholar 

  • Flowerdew, J. R., J. Gurnell and J. H. W. Gipps (1985)The ecology of woodland rodents bank voles and wood mice. Zoological Society of London Symposia 55, Clarendon Press, Oxford.

    Google Scholar 

  • Framstad, E., N. C. Stenseth, O. N. Bjørnstad and W. Falck (1997) Limit cycles in Norwegian lemmings: tensions between phasedependence and density-dependence.Proceedings of the Royal Society of London B 264: 31–38.

    Google Scholar 

  • Gaillard, J.-M. and N. G. Yoccoz (1998) Actaptive responses of juvenile and adult survival to environmental variation in mammalian populations. (in review).

  • Gaillard, J.-M., M. Festa-Bianchet and N. G. Yoccoz (1998) Population dynamics of large herbivores: variable recruitment with constant adult survival.Trends in Ecology and Evolution 13: 58–63.

    Google Scholar 

  • Gaillard, J.-M., D. Delorme, J.-M. Boutin, G. van Laere, B. Boisaubert and R. Pradel (1993) Roe deer survival patterns: a comparative analysis of contrasting populations.Journal of Animal Ecology 62: 778–791.

    Google Scholar 

  • Gaines, M.S., N. C. Stenseth, M. L. Johnson, R. A. Ims and S. Bondrup-Nielsen (1991) A response to solving the enigma of population cycles with a multifactorial perspective.Journal of Mammalogy 72: 627–631.

    Google Scholar 

  • Gilbert, B. S., C. J. Krebs, D. Talarico and D. B. Cichowski (1986) DoClethrionomys rutilus females suppress maturation of juvenile females?Journal of Animal Ecology 55: 543–552.

    Google Scholar 

  • Gilbert, N. (1984) What they didn’t tell you about limit cycles.Oecologia 65: 112–113.

    Google Scholar 

  • Grenfell, B. and J. Harwood (1997) (Meta)population dynamics of infectious diseases.Trends in Ecology and Evolution 12: 395–399.

    Google Scholar 

  • Grenfell, B.T., O.F. Price, S.D. Albon and T. H. Clutton-Brock (1992) Overcompensation and population cycles in an ungulate.Nature 355: 823–826.

    PubMed  CAS  Google Scholar 

  • Gromov, I. M. and I. Ya. Plyakov (1992)Voles (Microtinae). Fauna of the USSR; Mammals 3(8).

  • Gustafsson, T. O. (1985) Sexual maturation inClethrionomys.Annales Zoologici Fennici 22: 303–308.

    Google Scholar 

  • Gyllenberg, M., I. Hanski and T. Lindström (1997) Continuous versus discrete single species population models with adjustable reproductive strategies.Bulletin of Mathematical Biology 59: 679–705.

    Google Scholar 

  • Haila, Y. (1982) Hypothetico-deductivism and the competition controversy in ecology.Annales Zoologici Fennici 19: 255–263.

    Google Scholar 

  • Haila, Y. and O. Järvinen (1982) The role of theoretical concepts in understanding the ecological theater: a case study on island biogeography. pp. 261–278.In E. Saarinen (ed.)Conceptual issues in ecology. D Reidel, Dordrecht, The Netherlands.

    Google Scholar 

  • Hanski, I. (1990) Density dependence, regulation and variability in animal populations. pp. 140–150.In R. M. May and M. P. Hassell (eds.)Regulation and relative abundance of plants and animals. The Royal Society, London.

    Google Scholar 

  • Hanski, I. and E. Korpimäki (1995) Microtine rodent dynamics in northern Europe: parameterized models for the predator-prey interaction.Ecology 76: 840–850.

    Google Scholar 

  • Hanski, I., L. Hansson and H. Henttonen (1991) Specialist predators, generalist predators, and the microtine rodent cycle.Journal of Animal Ecology 60: 353–367.

    Google Scholar 

  • Hanski, I., I. P. Woiwod and J. Perry (1993) Density dependence, population persistence, and largely futile arguments.Oecologia 95: 595–598.

    Google Scholar 

  • Hansson, L. (1971) Habitat, food and population dynamics of the field voleMicrotus agrestis (L.) in Southern Sweden.Viltrevy 8: 267–378.

    Google Scholar 

  • Hansson, L. (1979) On the importance of landscape heterogeneity in northern region for the breeding population densities of homeotherms: a general hypothesis.Oikos 33: 182–189.

    Google Scholar 

  • Hansson, L. (1987) Vole sex ratios: the importance of mating systems and maternal condition.Oikos 49: 161–164.

    Google Scholar 

  • Hansson, L. and H. Henttonen (1985) Gradients in density variations of small rodents: the importance of latitude and snow cover.Oecologia 67: 394–402.

    Google Scholar 

  • Hansson, L. and H. Henttonen (1988) Rodent dynamics as community processes.Trends in Ecology and Evolution 3: 195–200.

    Google Scholar 

  • Hansson, L. and N. C. Stenseth (1988) Modelling small rodent population dynamics: suggestions to empiricists, theoreticians and editors.Oikos 52: 227–229.

    Google Scholar 

  • Hansson, L. and J. Zejda (1977) Plant damage by bank voles (Clethrionomys glareolus, Schreber) and related species in Europe.EPPO Bulletin 7: 223–242.

    Google Scholar 

  • Hassell, M. P., J. Latto and R. M. May (1989) Seeing the wood for the trees: detecting density dependence from testing life table studies.Journal of Animal Ecology 58: 883–892.

    Google Scholar 

  • Haukioja, E., S. Neuvonen, S. Hanhimäki and P. Niemelä (1988) The autumnal moth in Fennoscandia. pp. 163–177.In A.A. Berryman (ed.)Dynamics of forest insect populations: patterns, causes, and management strategies. Plenum Press, New York.

    Google Scholar 

  • Henttonen, H. and A. Kaikusalo (1993) Lemming movement. pp. 157–186.In N. C. Stenseth and R. A. Ims (eds.)The biology of lemming. Academic Press, London.

    Google Scholar 

  • Henttonen, H., A. D. McGuire and L. Hansson (1985) Comparisons of amplitudes and frequencies (spectral analyses) of density variations in long-term data sets ofClethrionomys species.Annales Zoologici Fennici 22: 221–227.

    Google Scholar 

  • Henttonen, H., O. Vapalahti and A. Vaheri (1996) How many kinds of hantaviruses?Trends in Ecology and Evolution 11: 7–8.

    Google Scholar 

  • Hestbeck, J. B. (1982) Population regulation of cyclic mammals: the social fence hypothesis.Oikos 39: 157–163.

    Google Scholar 

  • Hjellvik, V. and D. Tjøstheim (1998a) Modeling panels of intercorrelated autoregressive time series (in review).

  • Hjellvik, V. and D. Tjøstheim (1998b) Residual variance estimation and order determination in panels of intercorrelated autoregressive time series (in review).

  • Holyoak, M. (1994) Appropriate time scales for identifying lags in density-dependent processes.Journal of Animal Ecology 63: 479–483.

    Google Scholar 

  • Hörnfeldt, B. (1994) Delayed density dependence as a determinant of vole cycles.Ecology 75: 791–806.

    Google Scholar 

  • Ims, R. A. (1988) Spatial clumping of sexually receptive females induces space sharing among male voles.Nature 335: 541–543.

    PubMed  CAS  Google Scholar 

  • Ims, R. A. (1994) Litter sex ratio variation in laboratory colonies of two geographically distinct strains of the root voleMicrotus oeconomus.Ecography 17: 141–146.

    Google Scholar 

  • Ims, R. A. (1997) Determinants of geographic variation in growth and reproductive traits in the root vole.Ecology 78: 461–470.

    Google Scholar 

  • Ims, R. A. and H. Steen (1990) Geographical synchrony in microtine population cycles: a theoretical evaluation of the role of nomadic predators.Oikos 57: 381–387.

    Google Scholar 

  • Ims, R. A. and N. G. Yoccoz (1998)Ecological methodology: study design and statistical analysis. Technical Report, University of Oslo.

  • Ishibashi, Y., T. Saitoh, S. Abe and M. C. Yoshida (1997) Sex-related spatial kin structure in a spring population of grey-sided volesClethrionomys rufocanus as revealed by mitochondrial and microsatellite DNA analyses.Molecular Ecology 6: 63–71.

    PubMed  CAS  Google Scholar 

  • Ishibashi, Y., T. Saitoh and M. Kawata (1998a) Social organization of the voleClethrionomys rufocanus and its demographic and genetic consequences: a review.Researches on Population Ecology 40: 39–50.

    Google Scholar 

  • Ishibashi, Y., T. Saitoh, S. Abe and M. C. Yoshida (1998b) Kinrelated social organization in a winter population of the voleClethrionomys rufocanus.Researches on Population Ecology 40: 51–59.

    Google Scholar 

  • Itô, Y. (1968) Are insect populations periodically fluctuating?Kagaku (Science)38: 39–45 (in Japanese).

    Google Scholar 

  • Itô, Y. (1978)Comparative ecology, 2nd edn. Iwanami-shoten, Tokyo. (in Japanese) English version (edited and translated by J. Kikkawa) was published in 1980. Cambridge University Press, Cambridge.

    Google Scholar 

  • Kalela, O. (1957) Regulation of reproduction rate in subarctic populations of the voleClethrionomys rufocanus (Sund.).Annales Academiae Scientiarum Fennicae, Series A IV, Biologica 34: 1–60.

    Google Scholar 

  • Kaneko, Y., K. Nakata, T. Saitoh, N. C. Stenseth and Ottar N. Bjørnstad (1998) The biology of the voleClethrionomys rufocanus: a review.Researches on Population Ecology 40: 21–37.

    Google Scholar 

  • Kareiva, P. (1994) Space: the final frontier for ecological theory.Ecology 75: 1.

    Google Scholar 

  • Kawata, M. (1997) Exploitative competition and ecological effective abundance.Ecological Modelling 94: 125–137.

    Google Scholar 

  • Keith, L. B. (1990) Dynamics of snowshoe hare populations.Current Mammalogy 2: 119–195.

    Google Scholar 

  • Kendall, D. G. (1949) Stochastic processes and population growth.Journal of the Royal Statistical Society B 11: 230–264.

    Google Scholar 

  • Kirkendall, L. and N. C. Stenseth (1989) Population dynamics of bark beetles, with special reference toIps typographus: contributions of applied bark beetle studies to basic research in ecology and population biology.Holarctic Ecology 12: 526–527.

    Google Scholar 

  • Kish, L. (1987)Statistical design for research. John Wiley and Sons, New York.

    Google Scholar 

  • Klimertzek, D. (1990) Population dynamics of pine-feeding insects: a historical study. pp. 3–10.In A. D. Watt, S. R. Leather, M. D. Hunter and N. A. C. Kidd (eds.)Population dynamics of forest insect. Intercept, Andover, UK.

    Google Scholar 

  • Krebs, C. J. (1978) A review of the Chitty hypothesis of population regulation.Canadian Journal of Zoology 56: 2463–2480.

    Google Scholar 

  • Krebs, C. J. (1988) The experimental approach to rodent population dynamics.Oikos 52: 143–149.

    Google Scholar 

  • Krebs, C. J. (1991) The experimental paradigm and long-term population studies.Ibis 133 supplement1: 3–8.

    Google Scholar 

  • Krebs, C. J. (1992) The role of dispersal in cyclic rodent populations. pp. 160–175.In N. C. Stenseth and W. Z. Lidicker (eds.)Animal dispersal: small mammals as a model. Chapman and Hall, London.

    Google Scholar 

  • Krebs, C. J. (1994)Ecology: The experimental analysis of distribution and abundance, 4th edn. Harper Collins College Publishers, New York.

    Google Scholar 

  • Krebs, C. J. (1996) Population cycles revised.Journal of Mammalogy 77: 8–24.

    Google Scholar 

  • Krebs, C. J. (1997) Vole cycle on Hokkaido: a time-series goldmine.Trends in Ecology and Evolution 12: 340–341.

    Google Scholar 

  • Krebs, C. J. and J. H. Myers (1974) Population cycles in small mammals.Advances in Ecological Research 8: 267–299.

    Google Scholar 

  • Krebs, C. J., B. L. Keller and R. H. Tamarin (1969)Microtus population biology: demographic changes in fluctuating populations ofM. ochrogaster andM. pennsylvanicus in southern Indiana.Ecology 50: 587–607.

    Google Scholar 

  • Krebs, C. J., S. Boutin, R. Boonstra, A. R. E. Sinclair, J. N. M. Smith, M. R. T. Dale, K. Martin and R. Turkington (1995) Impact of food and predation on the snowshoe hare cycle.Science 269: 112–115.

    Google Scholar 

  • Lack, D. (1954)The natural regulation of animal numbers. Oxford University Press.

  • Lambin, X. and C. J. Krebs (1991) Can changes in female relatedness influence microtine population dynamics?Oikos 61: 126–132.

    Google Scholar 

  • Lambin, X. and C. J. Krebs (1993) Influence of female relatedness on the demography of Townsend’s vole populations in spring.Journal of Animal Ecology 62: 536–550.

    Google Scholar 

  • Lambin, X. and N. G. Yoccoz (1998) The impact of population kin-structure on nestling survival in Townsend’s voles,Microtus townsendii.Journal of Animal Ecology 67: 1–16.

    Google Scholar 

  • Lambin, X., D. Elston, S. Petty and J. L. MacKinnon (1998) Spatial asynchrony and periodic travelling waves in cyclic populations of field vole.Proceedings of the Royal Society of London B (in press).

  • Larsson, T.-B. (1975) Damage caused by small rodents in Sweden.Ecological Bulletins 19: 163–173.

    Google Scholar 

  • Lebreton, J.-D. (1990) Modelling density dependence, environmental variability, and demographic stochasticity from population counts: An example using Wytham Wood great tits. pp. 89–102.In J. Blondel, A. Gosier, J.-D. Lebreton and R. McCleery (eds.)Population biology of the passerine birds. Springer-Verlag, Berlin.

    Google Scholar 

  • Lebreton, J. D., K.P. Burnham, J. Clobert and D. R. Anderson (1992) Modeling survival and testing biological hypotheses using marked animals: a unified approach with case studies.Ecological Monographs 62: 67–118.

    Google Scholar 

  • Leirs, H., N. C. Stenseth, J. D. Nichols, J. E. Hines, R. Verhagen and W. Verheyen (1997) Stochastic seasonality and nonlinear density-dependent factors regulate population size in an African rodent.Nature 389: 176–180.

    PubMed  CAS  Google Scholar 

  • Lewontin, R. C. (1968)Population biology and evolution. Syracuse University Press, Syracuse.

    Google Scholar 

  • Lidicker, W. Z., Jr. (1988) Solving the enigma of the microtine ‘cycle’.Journal of Mammalogy 69: 225–235.

    Google Scholar 

  • Lidicker, W. Z., Jr. (1991) In defense of a multifactor perspective in population ecology.Journal of Mammalogy 72: 636–635.

    Google Scholar 

  • Liebhold, A., N. Kamata and T. Jacob (1996) Cyclicity and synchrony of historical outbreaks of the beech caterpillar,Quadricalcarifera punctatella (Motschulsky) in Japan.Researches on Population Ecology 38: 87–94.

    Google Scholar 

  • Lindén, H. (1988) Latitudinal gradients in predator-prey interactions, cyclicity and synchronism in voles and small game populations in Finland.Oikos 52: 341–349.

    Google Scholar 

  • Lindström, T. (1993) Qualitative analysis of a predator-prey system with limit cycles.Journal of Mathematical Biology 31: 541–561.

    Google Scholar 

  • Lindström, T. (1994) Global stability of a model for competing predators. pp. 233–245In M. Gyllenberg and L.-E. Persson (eds.)Analysis, algebra, and computers in mathematical research. Marcel Dekker, New York.

    Google Scholar 

  • Loreto, V., G. Paladin and A. Vulpiani (1996) Concept of complexity in random dynamical systems.Physical Review E 53: 2087–2098.

    CAS  Google Scholar 

  • Lotka, A. J. (1925)Elements of physical biology. Williams & Wilkins, Baltimore.

    Google Scholar 

  • May, R. M. (1972) Limit cycles in predator-prey communities.Science 177: 900–902.

    PubMed  Google Scholar 

  • May, R. M. (1974) Biological populations with nonoverlapping populations: stable points, stable cycles, and chaos.Science 186: 645–647.

    PubMed  CAS  Google Scholar 

  • May, R. M. (1986) When two and two do not make four: nonlinear phenomena in ecology.Proceedings of the Royal Society of London B 228: 241–266.

    Google Scholar 

  • Maynard Smith, J. (1982) Storming the fortress.New York Review May 13, 1982: 41–42.

  • Mclntosh, R. P. (1987) Pluralism in ecology.Annual Review of Ecology and Systematics 18: 321–341.

    Google Scholar 

  • Messier, F. (1991) The significance of limiting and regulating factors on the demography of moose and white-tailed deer.Journal of Animal Ecology 60: 377–393.

    Google Scholar 

  • Moran, P. A. P. (1953a) The statistical analysis of the Canadian lynx cycle. I structure and prediction.Australian Journal of Zoology 1: 163–173.

    Google Scholar 

  • Moran, P. A. P. (1953b) Statistical analysis of the Canadian Lynx cycle, 2. Synchronization and meteorology.Australian Journal of Zoology 1: 291–298.

    Google Scholar 

  • Moss, R., A. Watson and R. Parr (1996) Experimental prevention of population cycle in red grouse.Ecology 77: 1512–1530.

    Google Scholar 

  • Murdoch, W. W. (1994) Population regulation in theory and practice.Ecology 75: 271–287.

    Google Scholar 

  • Myers, J. H. (1988) Can a general hypothesis explain population cycles of forest Lepidoptera?Advances in Ecological Research 18: 179–242.

    Google Scholar 

  • Myers, J. H. (1998) Synchrony in outbreaks of forest Lepidoptera: a possible example of the Moran effect.Ecology 79: 1111–1117.

    Google Scholar 

  • Myllymäki, A. (1979) Importance of small mammals as pests in agriculture and stored products. pp. 239–279.In D. M. Stoddart (ed.)Ecology of small mammals. Chapman and Hall, London.

    Google Scholar 

  • Nakata, K. (1989) Regulation of reproduction rate in a cyclic population of the red-backed vole,Clethrionomys rufocanus bedfordiae.Researches on Population Ecology 31: 185–209.

    Google Scholar 

  • Nicholson, A. J. (1933) The balance of animal populations.Journal of Animal Ecology Supplement 2: 132–178.

    Google Scholar 

  • Nicholson, A. J. (1954) An outline of the dynamics of animal populations.Australian Journal of Zoology 2: 9–65.

    Google Scholar 

  • Niklasson, B., B. Hörnfeldt, A. Lundkvist, S. Bjorsten and J. Leduc (1995) Temporal dynamics of Puumula virus antobody prevalence in voles and nephropathia epidemica incidence in humans.American Journal of Tropical Medicine and Hygiene 53: 134–140.

    PubMed  CAS  Google Scholar 

  • Ostfeld, R. S., C. D. Canham and S. R. Pugh (1993) Intrinsic density-dependent regulation of vole populations.Nature 366: 259–261.

    PubMed  CAS  Google Scholar 

  • Ostfeld, R. S. and C. D. Canham (1995) Density-dependent processes in meadow voles: an experimental approach.Ecology 76: 521–532.

    Google Scholar 

  • Paladin, G., M. Serva and A. Vulpiani (1995) Complexity in dynamical systems with noise.Physical Review Letters 74: 66–69.

    PubMed  CAS  Google Scholar 

  • Paul, E. A. and G. P. Robertson (1989) Ecology and the agricultural sciences: a false dichotomy?Ecology 70: 1594–1597.

    Google Scholar 

  • Petrusewicz, K. (ed.) (1983)Ecology of the bank vole. Acta Theriologica 28 Supplement 1.

  • Pitelka, F. A. and G. O. Batzli (1993) Distribution, abundance and habitat use by lemmings on the north slope of Alaska. pp. 213–236.In N. C. Stenseth and R. A. Ims (eds.)The biology of lemming. Academic Press, London.

    Google Scholar 

  • Pollock, K. H., J. D. Nichols, C. Brownie and J. E. Hines (1990) Statistical inference for capture-recapture experiments.Wildlife Monographs 107: 1–97.

    Google Scholar 

  • Portier, C., M. Festa Bianchet, J.-M. Gaillard, J. T. Jorgenson and N. G. Yoccoz (1998) Effects of density and weather on survival of bighorn sheep lambs (Ovis canadensis). Journal of Zoology, London (in press).

  • Ranta, E. and V. Kaitala (1997) Travelling waves in vole population dynamics.Nature 390: 456.

    Google Scholar 

  • Ranta, E., V. Kaitala and P. Lundberg (1997) The spatial dimension in population fluctuations.Science 278: 1621–1623.

    PubMed  CAS  Google Scholar 

  • Rosenbaum, P. R. (1995)Observational studies. Springer-Verlag, New York.

    Google Scholar 

  • Royama, T. (1992)Analytical population dynamics. Chapman and Hall, London.

    Google Scholar 

  • Ruxton, G. D. and M. Doebeli (1996) Spatial self-organization and persistence of transients in a metapopulation model.Proceedings of the Royal Society of London B 263: 1153–1158.

    Google Scholar 

  • Saitoh, T. (1981) Control of female maturation in high density populations of the red-backed vole,Clethrionomys rufocanus bedfordiae.Journal of Animal Ecology 50: 79–87.

    Google Scholar 

  • Saitoh, T. (1991) The effects and limits of territoriality on population regulation in grey red-backed voles,Clethrionomys rufocanus bedfordiae.Researches on Population Ecology 33: 367–386.

    Google Scholar 

  • Saitoh, T. and K. Takahashi (1998) The role of vole populations in prevalence of the parasite (Echinococcus multilocularis) in foxes.Researches on Population Ecology 40: 97–105.

    Google Scholar 

  • Saitoh, T., N. C. Stenseth and O. N. Bjørnstad (1997) Density dependence in fluctuating grey-sided vole populations.Journal of Animal Ecology 66: 14–24.

    Google Scholar 

  • Saitoh, T., O. N. Bjørnstad and N. C. Stenseth (1998a) Densitydependence in voles and mice: a comparative study.Ecology (in press).

  • Saitoh, T., N. C. Stenseth and O. N. Bjørnstad (1998b) The population dynamics of the voleClethrionomys rufocanus in Hokkaido, Japan.Researches on Population Ecology 40: 61–76.

    Google Scholar 

  • Saucy, F. (1994) Density dependence in time series of the fossorial form of the water vole,Arvicola terrestris.Oikos 71: 381–392.

    Google Scholar 

  • Sauer, J. R. and M. S. Boyce (1983) Density dependence and survival of elk in Northwestern Wyoming.Journal of Wildlife Management 47: 31–37.

    Google Scholar 

  • Seber, G. A. F. (1992) A review of estimating animal abundance II.International Statistical Review 60: 129–166.

    Google Scholar 

  • Shigesada, N. and K. Kawasaki (1997)Biological invasions: theory and practice. Oxford University Press, Oxford.

    Google Scholar 

  • Sinclair, A. R. E. (1989) Population regulation in animals. pp. 197–241.In J. M. Cherrett (ed.)Ecological concepts. Blackwell Scientific Publications, Oxford.

    Google Scholar 

  • Sinclair, A. R. E. and R. P. Pech (1996) Density dependence, stochasticity, compensation and predator regulation.Oikos 75: 164–173.

    Google Scholar 

  • Sittler, B. (1995) Response of stoats (Mustela erminea) to a fluctuating lemming (Dicrostonyx groenlandicus) population in north east Greenland: preliminary results from a long-term study.Annales Zoologici Fennici 32: 79–92.

    Google Scholar 

  • Sokal, R. R. and N. L. Oden (1978) Spatial autocorrelation in biology. I methodology, II application.Biological Journal of the Linnean Society 10: 199–228.

    Google Scholar 

  • Stacy, J. E., P. E. Jorde, H. Steen, R. A. Ims, A. Purvis and K. S. Jakobsen (1997) Lack of concordance between mtDNA gene flow and population density fluctuations in the bank vole.Molecular Ecology 6: 751–759.

    PubMed  CAS  Google Scholar 

  • Steen, H. (1994) Low survival of long distance dispersers of the root vole (Microtus oeconomus).Annales Zoologici Fennici 31: 271–274.

    Google Scholar 

  • Steen, H., R. A. Ims and G. A. Sonerud (1996) Spatial and temporal patterns of small-rodent population dynamics at a regional scale.Ecology 77: 2365–2372.

    Google Scholar 

  • Stenseth, N. C. (1977a) Evolutionary aspects of demographic cycles: the relevance of some models of cycles for microtine fluctuations.Oikos 29: 525–538.

    Google Scholar 

  • Stenseth, N. C. (ed.) (1977b) Population dynamics of the field voleMicrotus agrestis: a modelling study.Oikos 29: 445–641.

    Google Scholar 

  • Stenseth, N. C. (1981) On Chitty’s theory for fluctuating populations: the importance of polymorphisms in the generation of regular cycles.Journal of theoretical Biology 90: 9–36.

    PubMed  CAS  Google Scholar 

  • Stenseth, N. C. (1984) Why mathematical models in evolutionary ecology? pp. 239–267.In J. Cooley and F. B. Golley (eds.)Trends in ecological research of the 1980’s. Plenum Press, New-York.

    Google Scholar 

  • Stenseth, N. C. (1985a) Models of bank vole and wood mouse populations.Symposium of the Zoological Society of London 55: 339–376.

    Google Scholar 

  • Stenseth, N. C. (ed.) (1985b) Clethrionomysbiology: population dynamics, dispersal, reproduction and social structure. Annales Zoologici Fennici vol. 22, No. 3.

  • Stenseth, N. C. (1986) On the interaction between stabilizing social factors and destabilizing trophic factors in small rodent populations.Theoretical Population Biology 29: 365–384.

    Google Scholar 

  • Stenseth, N. C. (1995a) The long-term study of voles, mice and lemmings: homage to Robert Collett.Trends in Ecology and Evolution 10: 512.

    Google Scholar 

  • Stenseth, N. C. (1995b) Snowshoe hare populations: squeezed from below and above.Science 269: 1061–1062.

    PubMed  CAS  Google Scholar 

  • Stenseth, N. C. and R. A. Ims (1993a) The history of lemming research: from the Nordic Sagas toThe Biology of Lemmings. pp. 3–34.In N. C. Stenseth and R. A. Ims (eds.)The biology of lemming. Academic Press, London.

    Google Scholar 

  • Stenseth, N. C. and R. A. Ims (1993b) Population dynamics of lemmings: temporal and spatial variation — an introduction. pp. 61–96.In N. C. Stenseth and R. A. Ims (eds.)The biology of lemming. Academic Press, London.

    Google Scholar 

  • Stenseth, N. C. and R. A. Ims (eds.) (1993c)The biology of lemming. Academic Press, London.

    Google Scholar 

  • Stenseth, N. C. and A. Łomnicki (1990) On the Charnov-Finerty hypothesis: the unproblematic transition from docile to aggressive and the problematic transition from aggressive to docile.Oikos 58: 234–238.

    Google Scholar 

  • Stenseth, N. C., O. N. Bjørnstad and T. Saitoh (1996a) A gradient from stable to cyclic populations ofClethrionomys rufocanus in Hokkaido, Japan.Proceedings of the Royal Society of London B 263: 1117–1126.

    CAS  Google Scholar 

  • Stenseth, N. C., O. N. Bjørnstad and W. Falck (1996b) Is spacing behaviour coupled with predation causing the microtine density cycle? A synthesis of process-oriented and pattern-oriented studies.Proceedings of the Royal Society of London B 263: 1423–1435.

    CAS  Google Scholar 

  • Stenseth, N. C., W. Falck, O. N. Bjørnstad and C. J. Krebs (1997) Population regulation in snowshoe hare and lynx populations: asymmetric food web configurations between the snowshoe hare and the lynx.Proceedings of the National Academy of Science of the USA 94: 5147–5152.

    CAS  Google Scholar 

  • Stenseth, N. C., R. Boonstra, N. G. Yoccoz and C. J. Krebs (1998a) Population cycles in lemmings and voles: dynamics and demographic signatures of non-linearity. (in review).

  • Stenseth, N. C., O. N. Bjørnstad and T. Saitoh (1998b) Seasonal forcing on the dynamics ofClethrionomys rufocanus: modelling the geographic gradient in population dynamicsResearches on Population Ecology 40: 85–95.

    Google Scholar 

  • Stenseth, N. C., W. Falck, K. S. Chan, O. N. Bjørnstad, M. O’Donoghue, H. Tong, R. Boonstra, S. Boutin, C. J. Krebs and N. G. Yoccoz (1998c) From ecological patterns to ecological processes: phase- and density-dependencies in the Canadian lynx cycle. (in review).

  • Stenseth, N.C., K.-S. Chan, E. Framstad and H. Tong (1998d) Phase- and density dependency dynamics in lemming populations: statistical and mathematical modelling of periodic temporal fluctuations with a fixed periodic component sustained by environmental stochasticity. (in review).

  • Stiling, P. (1988) Density-dependent processes and key factors in insect populations.Journal of Animal Ecology 57: 581–594.

    Google Scholar 

  • Strong, D. (1986) Density-vague population change.Trends in Ecology and Evolution 1: 39–42.

    Google Scholar 

  • Sugihara, G. (1994) Nonlinear forecasting for the classification of natural time series.Philosophical Transactions of the Royal Society of London A 348: 477–495.

    Google Scholar 

  • Sutherland, W. J. (1996)From individual behaviour to population ecology. Oxford University Press, Oxford.

    Google Scholar 

  • Sæther, B.-E. (1997) Environmental stochasticity and population dynamics of large herbivores: a search for mechanisms.Trends in Ecology and Evolution 12: 143–149.

    Google Scholar 

  • Taitt, M. J. and C. J. Krebs (1985) Population dynamics and cycling. pp. 567–620.In R. H. Tamarin (ed.)Biology of New World Microtus. Special Publication of the American Society of Mammalogists, No. 8.

  • Tamarin, R. H. (ed.) (1985)Biology of New World Microtus, The American Society of Mammalogists, No. 8.

  • Tenow, O. (1972) The outbreaks ofOporinia autumnata Bkh. andOperophtera spp. (Lep., Geomtridae) in the Scandinavian mountain chain and northern Finland 1862–1968.Zoologiska Bidrag från Uppsala,Supplement 2: 1–107.

  • Thompson, M. E. (1997)Theory of sample surveys. Chapman and Hall, London.

    Google Scholar 

  • Tjøstheim, D. (1994) Non-linear time series: a selective review.Scandinavian Journal of Statistics 21: 97–130.

    Google Scholar 

  • Tong, H. (1977) Some comments on the Canadian lynx data — with discussion.Journal of the Royal Statistical Society A 140: 432–435 and 448–468.

    Google Scholar 

  • Tong, H. (1990)Non-linear time series: a dynamical system approach. Oxford University Press.

  • Tong, H. (1995) A personal overview of non-linear time series analysis from a chaos perspective.Scandinavian Journal of Statistics 22: 399–421.

    Google Scholar 

  • Turchin, P. (1990) Rarity of density dependence or regulation with lags?Nature 344: 660–663.

    Google Scholar 

  • Turchin, P. (1993) Chaos and stability in rodent population dynamics: evidence from non-linear time-series analysis.Oikos 68: 167–172.

    Google Scholar 

  • Turchin, P. (1995a) Population regulation: old arguments and a new synthesis. pp. 19–40.In N. Cappuccino and P. Price (eds.)Population dynamics. Academic Press, New York.

    Google Scholar 

  • Turchin, P. (1995b) Chaos in microtine populations.Proceedings of the Royal Society of London B 262: 357–361.

    Google Scholar 

  • Turchin, P. (1996) Nonlinear time-series modeling of vole population fluctuations.Researches on Population Ecology 38: 121–132.

    Google Scholar 

  • Turchin, P. and I. Hanski (1997) An empirically based model for latitudinal gradient in vole population dynamics.American Naturalist 149: 842–874.

    Google Scholar 

  • Volterra, V. (1931)Leçons sur la théorie mathématique de la lutte pour la vie. Marcel Brelot, Paris.

    Google Scholar 

  • Vulpiani, A. (1995) On the effect of the noise in dynamical systems.Il nuovo cimento 17: 653–660.

    Google Scholar 

  • Warkowska-Dratnal, H. and N. C. Stenseth (1985) Dispersal and the microtine cycle: comparison of two hypotheses.Oecologia 65: 468–477.

    Google Scholar 

  • Wiens, J. A. (1989) Spatial scaling in ecology.Functional Ecology 3: 385–397.

    Google Scholar 

  • Woiwod, I. P. and I, Hanski (1992) Patterns of density dependence in moth and aphids.Journal of Animal Ecology 61: 619–629.

    Google Scholar 

  • Yao, Q., H. Tong, B. Finkenstäd and N. C. Stenseth (1998) Common structure in panels of short time series. (in review).

  • Yoccoz, N. G., K. Nakata, N. C. Stenseth and T. Saitoh (1998) The demography of the voleClethrionomys rufocanus: from mathematical and statistical models to further field studies.Researches on Population Ecology 40: 107–121.

    Google Scholar 

  • Yule, G. U. (1927) On a method of investigating periodicities in disturbed series with special reference to Wolfer’s sunspot numbers.Philosophical Transactions of the Royal Society of London A 226: 267–98.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nils Chr Stenseth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stenseth, N.C., Saitoh, T. & Yoccoz, N.G. Frontiers in population ecology of microtine rodents: A pluralistic approach to the study of population ecology. Res Popul Ecol 40, 5–20 (1998). https://doi.org/10.1007/BF02765218

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02765218

Key words

Navigation