Researches on Population Ecology

, Volume 40, Issue 1, pp 5–20 | Cite as

Frontiers in population ecology of microtine rodents: A pluralistic approach to the study of population ecology

  • Nils Chr Stenseth
  • Takashi Saitoh
  • Nigel G. Yoccoz
Special Feature


Current challenges for the study of population ecology of microtine rodents are reviewed. Comparisons with other taxonomic groups (other mammals, birds and insects) are given throughout. A major challenge is to link patterns and processes (i.e. mechanisms) better than is the case today. Other major challenges include the furthering of our understanding of the interaction between deterministic and stochastic processes, and as part thereof, the interaction between density-dependent and density-independent processes. The applicability of comparative studies on populations exhibiting different temporal dynamical patterns is, in this connection, emphasized. Understanding spatiotemporal dynamical patterns is another major challenge, not the least from a methodological point of view. Long-term and large-scale ecological data on population dynamics (in space and time) are critical for this purpose. Looking for consistency between hypothesized mechanisms and observed patterns is emphasized as a good platform for further empirical and theoretical work. The intellectual feedback process between different approaches to the study of microtine population ecology (observational studies, experimental manipulative studies, statistical modeling and mathematical modeling) are discussed. We recommend a pluralistic approach (involving both observational and experimental as well as theoretical studies) to the study of small rodent ecology.

Key words

Clethrionomys rufocanus experimental manipulation and testing mathematical modeling patterns and processes statistical modeling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abe, H. (1976) Population structure and reproductive activity ofClethrionomys rufocanus bedfordiae (Thomas) in a wind shelterbelt of the Ishikari Plain, Hokkaido.Journal of the Mammalogical Society of Japan 7: 17–30.Google Scholar
  2. Albon, S. D., T. H. Clutton-Brock and F. E. Guiness (1987) Early development and population dynamics in red deer. II. Density-independent effects and cohort variation.Journal of Animal Ecology 56:69–81.Google Scholar
  3. Anderson, S., A. Auquier, W. W. Hauck, D. Oakes, W. Vandaele and H. I. Weisberg (1980)Statistical methods for comparative studies. John Wiley and Sons, New-York.Google Scholar
  4. Andreev, A. (1988) The ten year cycle of the willow grouse of lower Kolyma.Oecologia 76: 261–267.Google Scholar
  5. Andrewartha, H. G. and L. C. Birch (1954)The distribution and abundance of animals. University of Chicago Press, Chicago.Google Scholar
  6. Andrewartha, H. G. and L. C. Birch (1984)The ecological web. University of Chicago Press, Chicago.Google Scholar
  7. Atkinson, A. C. (1996) The usefulness of optimum experimental designs.Journal of the Royal Statistical Society B 58: 59–76.Google Scholar
  8. Barbour, D. A. (1990) Synchronous fluctuations in spatially separated populations of cyclic forest insects. pp. 339–346.In A. D. Watt, S. R. Leather, M. D. Hunter and N.A. C. Kidd (eds.)Population dynamics of forest insects. Intercept, Andover, Hampshire.Google Scholar
  9. Bartlett, M. S. (1970)Stochastic population models. Metheuen & Co Ltd, London.Google Scholar
  10. Batzli, G. O. (1996) Population cycles revisited.Trends in Ecology and Evolution 11: 488–489.Google Scholar
  11. Berryman, A. A. (1991) Stabilization or regulation: what it all means!Oecologia 86: 140–143.Google Scholar
  12. Berryman, A. A. (1992) Vague notions of density-dependence.Oikos 62: 252–254.Google Scholar
  13. Bjørnstad, O. N., W. Falck and N. C. Stenseth (1995) A geographic gradient in small rodent density fluctuations: a statistical modelling approach.Proceedings of the Royal Society of London B 262: 127–133.Google Scholar
  14. Bjornstad, O. N., N. C. Stenseth and T. Saitoh (1998a) Synchrony and scaling in dynamics of voles and mice in northern Japan.Ecology (in press).Google Scholar
  15. Bjørnstad, O. N., N. C. Stenseth, T. Saitoh and O. C. Lingjæerde (1998b) Mapping the regional transition in dynamics ofClethrionomys rufocanus: spectral densities and functional data analysis.Researches on Population Ecology 40: 77–84.Google Scholar
  16. Bjornstad, O. N., M. Begon, N. C. Stenseth, W. Falck, S. M. Sait and D. J. Thompson (1998c) Population dynamics of the Indian meal moth: Demographic stochasticity and delayed regulatory mechanisms.Journal of Animal Ecology 67: 110–126.Google Scholar
  17. Bondrup-Nielsen, S. (1986) Investigation of spacing behaviour ofClethrionomys gapperi by experimentation.Journal of Animal Ecology 55: 269–280.Google Scholar
  18. Box, J. F. (1978)R. A. Fisher, the life of a scientist. John Wiley and Sons, New York.Google Scholar
  19. Bujalska, G. (1970) Reproduction stabilizing elements in an island population ofClethrionomys glareolus (Schreber, 1780).Acta Theriologica 15: 381–412.Google Scholar
  20. Cappuccino, N. and P. W. Price (1995)Population dynamics. Academic Press, New York.Google Scholar
  21. Campbell, M. J. and A. M. Walker (1977) A survey of statistical work on the Mackenzie River series of annual Canadian lynx trappings for the years 1821–1934 and a new analysis.Journal of the Royal Statistical Society A 140: 411–431 and 448–468.Google Scholar
  22. Caswell, H. (1988) Theory and models in ecology: a different perspective.Ecological Modelling 43: 33–44.Google Scholar
  23. Chan, K.-S., H. Tong and N. C. Stenseth (1998a) Analyzing abundance data from periodically fluctuating rodent populations by threshold models: a nearest neighbour bootstrap approach. (in review).Google Scholar
  24. Chan, K.-S., H. Tong and N. C. Stenseth (1998b) Testing for common structure in a panel of threshold models. (in review).Google Scholar
  25. Charnov, E. L. and J. P. Finerty (1980) Vole population cycles: a case for kin-selection?Oecologia 45: 1–2.Google Scholar
  26. Chitty, D. (1960) Population processes in the vole and the relevance to general theory.Canadian Journal Zoology 38: 99–113.Google Scholar
  27. Chitty, D. (1967) The natural selection of self-regulatory behaviour in animal populations.Proceedings of Ecological Society of Australia 2: 51–78.Google Scholar
  28. Christian, J. J. (1950) The andro-pituitary system and population cycles in small mammals.Journal of Mammalogy 31: 247–259.Google Scholar
  29. Christian, J. J. (1980) Endocrine factors in population regulation. pp. 55–115.In M. N. Cohen, R. S. Malpass and H. G. Klein (eds.)Biosocial mechanisms of population regulation. Yale University Press, New Haven.Google Scholar
  30. Clutton-Brock, T. H., M. Major and F. E. Guinness (1985) Population regulation in male and female red deer.Journal of Animal Ecology 54: 831–846.Google Scholar
  31. Clutton-Brock, T. H., O. F. Price, S.D. Albon and P.A. Jewell (1991) Persistent instability and population regulation in Soay sheep.Journal of Animal Ecology 60: 593–608.Google Scholar
  32. Clutton-Brock, T. H., A. W. Illius, K. Wilson, B. T. Grenfell, A. D. C. MacColl and S. D. Albon (1997) Stability and instability in ungulate populations: an empirical analysis.American Naturalist 149: 195–219.Google Scholar
  33. Cockburn, A. (1988)Social behavior in fluctuating populations. Croom Helm, London.Google Scholar
  34. Collett, R. (1911/1912)Norges pattedyr (Norwegian mammals). Aschehoug and Company, Kristiania (in Norwegian).Google Scholar
  35. Cox, D. R. (1958)Planning of experiments. John Wiley and Sons, New York.Google Scholar
  36. Crowcroft, P. (1991)Elton’s ecologist. A history of the bureau of animal populations. The University of Chicago Press, Chicago.Google Scholar
  37. Crowley, P. H. (1992) Density dependence, boundedness, and attraction: detecting stability in stochastic systems.Oecologia 90: 246–254.Google Scholar
  38. de Roos, A. M., E. McCauley and W. G. Wilson (1991) Mobility versus density-limited predator-prey dynamics on different spatial scales.Proceedings of the Royal Society of London B 246: 117–122.Google Scholar
  39. Den Boer, P. J. (1991) Seeing the trees for the wood: random walks or bounded fluctuations of population size?Oecologia 86: 484–491.Google Scholar
  40. Den Boer, P. J. and J. Reddingius (1996)Regulation and stabilization paradigms in population ecology. Chapman and Hall, London.Google Scholar
  41. Dennis, B. and G. P. Patil (1984) The gamma distribution and weighted multimodal gamma distribution as models of population abundance.Mathematical Biosciences 68: 187–212.Google Scholar
  42. Dennis, B., R. A. Desharnais, J. M. Cushing and R. F. Costantino (1997) Transitions in population dynamics: Equilibria to periodic cycles to aperiodic cycles.Journal of Animal Ecology 66: 704–729.Google Scholar
  43. Eberhardt, L. L. (1977) Optimal management policies for marine mammals.Wildlife Society Bulletin 5: 162–169.Google Scholar
  44. Ellner, S. and P. Turchin (1995) Chaos in noisy world: new methods and evidence from time-series analysis.American Naturalist 154: 343–375.Google Scholar
  45. Elton, C. S. (1924) Periodic fluctuations in the numbers of animals: their causes and effects.Journal of Experimental Biology 2: 119–163.Google Scholar
  46. Elton, C. S. (1942)Vole, mice and lemmings. Clarendon Press, Oxford.Google Scholar
  47. Engen, S. and R. Lande (1996) Population dynamic models generating the lognormal species abundance distribution.Mathematical Biosciences 132: 169–183.PubMedGoogle Scholar
  48. Epperson, B. K. and T. Q. Li (1997) Gene dispersal and spatial genetic structure.Evolution 51: 672–681.Google Scholar
  49. Falck, W., O. N. BJørnstad and N. C. Stenseth (1995a) Bootstrap estimated uncertainty of the dominant Lyapunov exponent for Holarctic microtine rodents.Proceedings of the Royal Society of London B 261: 159–165.Google Scholar
  50. Falck, W., O. N. Bjørnstad and N. C. Stenseth (1995b) Voles and lemmings. Chaos and uncertainty in fluctuating populations.Proceedings of the Royal Society of London B 262: 363–370.Google Scholar
  51. Finerty, J. P. (1980)The population ecology of cycles in small mammals: Mathematical theory and biological fact. Yale University Press, New Haven.Google Scholar
  52. Fisher, R. A. (1935)The design of experiments. Oliver and Boyd, Edinburgh.Google Scholar
  53. Flowerdew, J. R., J. Gurnell and J. H. W. Gipps (1985)The ecology of woodland rodents bank voles and wood mice. Zoological Society of London Symposia 55, Clarendon Press, Oxford.Google Scholar
  54. Framstad, E., N. C. Stenseth, O. N. Bjørnstad and W. Falck (1997) Limit cycles in Norwegian lemmings: tensions between phasedependence and density-dependence.Proceedings of the Royal Society of London B 264: 31–38.Google Scholar
  55. Gaillard, J.-M. and N. G. Yoccoz (1998) Actaptive responses of juvenile and adult survival to environmental variation in mammalian populations. (in review).Google Scholar
  56. Gaillard, J.-M., M. Festa-Bianchet and N. G. Yoccoz (1998) Population dynamics of large herbivores: variable recruitment with constant adult survival.Trends in Ecology and Evolution 13: 58–63.Google Scholar
  57. Gaillard, J.-M., D. Delorme, J.-M. Boutin, G. van Laere, B. Boisaubert and R. Pradel (1993) Roe deer survival patterns: a comparative analysis of contrasting populations.Journal of Animal Ecology 62: 778–791.Google Scholar
  58. Gaines, M.S., N. C. Stenseth, M. L. Johnson, R. A. Ims and S. Bondrup-Nielsen (1991) A response to solving the enigma of population cycles with a multifactorial perspective.Journal of Mammalogy 72: 627–631.Google Scholar
  59. Gilbert, B. S., C. J. Krebs, D. Talarico and D. B. Cichowski (1986) DoClethrionomys rutilus females suppress maturation of juvenile females?Journal of Animal Ecology 55: 543–552.Google Scholar
  60. Gilbert, N. (1984) What they didn’t tell you about limit cycles.Oecologia 65: 112–113.Google Scholar
  61. Grenfell, B. and J. Harwood (1997) (Meta)population dynamics of infectious diseases.Trends in Ecology and Evolution 12: 395–399.Google Scholar
  62. Grenfell, B.T., O.F. Price, S.D. Albon and T. H. Clutton-Brock (1992) Overcompensation and population cycles in an ungulate.Nature 355: 823–826.PubMedGoogle Scholar
  63. Gromov, I. M. and I. Ya. Plyakov (1992)Voles (Microtinae). Fauna of the USSR; Mammals 3(8).Google Scholar
  64. Gustafsson, T. O. (1985) Sexual maturation inClethrionomys.Annales Zoologici Fennici 22: 303–308.Google Scholar
  65. Gyllenberg, M., I. Hanski and T. Lindström (1997) Continuous versus discrete single species population models with adjustable reproductive strategies.Bulletin of Mathematical Biology 59: 679–705.Google Scholar
  66. Haila, Y. (1982) Hypothetico-deductivism and the competition controversy in ecology.Annales Zoologici Fennici 19: 255–263.Google Scholar
  67. Haila, Y. and O. Järvinen (1982) The role of theoretical concepts in understanding the ecological theater: a case study on island biogeography. pp. 261–278.In E. Saarinen (ed.)Conceptual issues in ecology. D Reidel, Dordrecht, The Netherlands.Google Scholar
  68. Hanski, I. (1990) Density dependence, regulation and variability in animal populations. pp. 140–150.In R. M. May and M. P. Hassell (eds.)Regulation and relative abundance of plants and animals. The Royal Society, London.Google Scholar
  69. Hanski, I. and E. Korpimäki (1995) Microtine rodent dynamics in northern Europe: parameterized models for the predator-prey interaction.Ecology 76: 840–850.Google Scholar
  70. Hanski, I., L. Hansson and H. Henttonen (1991) Specialist predators, generalist predators, and the microtine rodent cycle.Journal of Animal Ecology 60: 353–367.Google Scholar
  71. Hanski, I., I. P. Woiwod and J. Perry (1993) Density dependence, population persistence, and largely futile arguments.Oecologia 95: 595–598.Google Scholar
  72. Hansson, L. (1971) Habitat, food and population dynamics of the field voleMicrotus agrestis (L.) in Southern Sweden.Viltrevy 8: 267–378.Google Scholar
  73. Hansson, L. (1979) On the importance of landscape heterogeneity in northern region for the breeding population densities of homeotherms: a general hypothesis.Oikos 33: 182–189.Google Scholar
  74. Hansson, L. (1987) Vole sex ratios: the importance of mating systems and maternal condition.Oikos 49: 161–164.Google Scholar
  75. Hansson, L. and H. Henttonen (1985) Gradients in density variations of small rodents: the importance of latitude and snow cover.Oecologia 67: 394–402.Google Scholar
  76. Hansson, L. and H. Henttonen (1988) Rodent dynamics as community processes.Trends in Ecology and Evolution 3: 195–200.Google Scholar
  77. Hansson, L. and N. C. Stenseth (1988) Modelling small rodent population dynamics: suggestions to empiricists, theoreticians and editors.Oikos 52: 227–229.Google Scholar
  78. Hansson, L. and J. Zejda (1977) Plant damage by bank voles (Clethrionomys glareolus, Schreber) and related species in Europe.EPPO Bulletin 7: 223–242.Google Scholar
  79. Hassell, M. P., J. Latto and R. M. May (1989) Seeing the wood for the trees: detecting density dependence from testing life table studies.Journal of Animal Ecology 58: 883–892.Google Scholar
  80. Haukioja, E., S. Neuvonen, S. Hanhimäki and P. Niemelä (1988) The autumnal moth in Fennoscandia. pp. 163–177.In A.A. Berryman (ed.)Dynamics of forest insect populations: patterns, causes, and management strategies. Plenum Press, New York.Google Scholar
  81. Henttonen, H. and A. Kaikusalo (1993) Lemming movement. pp. 157–186.In N. C. Stenseth and R. A. Ims (eds.)The biology of lemming. Academic Press, London.Google Scholar
  82. Henttonen, H., A. D. McGuire and L. Hansson (1985) Comparisons of amplitudes and frequencies (spectral analyses) of density variations in long-term data sets ofClethrionomys species.Annales Zoologici Fennici 22: 221–227.Google Scholar
  83. Henttonen, H., O. Vapalahti and A. Vaheri (1996) How many kinds of hantaviruses?Trends in Ecology and Evolution 11: 7–8.Google Scholar
  84. Hestbeck, J. B. (1982) Population regulation of cyclic mammals: the social fence hypothesis.Oikos 39: 157–163.Google Scholar
  85. Hjellvik, V. and D. Tjøstheim (1998a) Modeling panels of intercorrelated autoregressive time series (in review).Google Scholar
  86. Hjellvik, V. and D. Tjøstheim (1998b) Residual variance estimation and order determination in panels of intercorrelated autoregressive time series (in review).Google Scholar
  87. Holyoak, M. (1994) Appropriate time scales for identifying lags in density-dependent processes.Journal of Animal Ecology 63: 479–483.Google Scholar
  88. Hörnfeldt, B. (1994) Delayed density dependence as a determinant of vole cycles.Ecology 75: 791–806.Google Scholar
  89. Ims, R. A. (1988) Spatial clumping of sexually receptive females induces space sharing among male voles.Nature 335: 541–543.PubMedGoogle Scholar
  90. Ims, R. A. (1994) Litter sex ratio variation in laboratory colonies of two geographically distinct strains of the root voleMicrotus oeconomus.Ecography 17: 141–146.Google Scholar
  91. Ims, R. A. (1997) Determinants of geographic variation in growth and reproductive traits in the root vole.Ecology 78: 461–470.Google Scholar
  92. Ims, R. A. and H. Steen (1990) Geographical synchrony in microtine population cycles: a theoretical evaluation of the role of nomadic predators.Oikos 57: 381–387.Google Scholar
  93. Ims, R. A. and N. G. Yoccoz (1998)Ecological methodology: study design and statistical analysis. Technical Report, University of Oslo.Google Scholar
  94. Ishibashi, Y., T. Saitoh, S. Abe and M. C. Yoshida (1997) Sex-related spatial kin structure in a spring population of grey-sided volesClethrionomys rufocanus as revealed by mitochondrial and microsatellite DNA analyses.Molecular Ecology 6: 63–71.PubMedGoogle Scholar
  95. Ishibashi, Y., T. Saitoh and M. Kawata (1998a) Social organization of the voleClethrionomys rufocanus and its demographic and genetic consequences: a review.Researches on Population Ecology 40: 39–50.Google Scholar
  96. Ishibashi, Y., T. Saitoh, S. Abe and M. C. Yoshida (1998b) Kinrelated social organization in a winter population of the voleClethrionomys rufocanus.Researches on Population Ecology 40: 51–59.Google Scholar
  97. Itô, Y. (1968) Are insect populations periodically fluctuating?Kagaku (Science)38: 39–45 (in Japanese).Google Scholar
  98. Itô, Y. (1978)Comparative ecology, 2nd edn. Iwanami-shoten, Tokyo. (in Japanese) English version (edited and translated by J. Kikkawa) was published in 1980. Cambridge University Press, Cambridge.Google Scholar
  99. Kalela, O. (1957) Regulation of reproduction rate in subarctic populations of the voleClethrionomys rufocanus (Sund.).Annales Academiae Scientiarum Fennicae, Series A IV, Biologica 34: 1–60.Google Scholar
  100. Kaneko, Y., K. Nakata, T. Saitoh, N. C. Stenseth and Ottar N. Bjørnstad (1998) The biology of the voleClethrionomys rufocanus: a review.Researches on Population Ecology 40: 21–37.Google Scholar
  101. Kareiva, P. (1994) Space: the final frontier for ecological theory.Ecology 75: 1.Google Scholar
  102. Kawata, M. (1997) Exploitative competition and ecological effective abundance.Ecological Modelling 94: 125–137.Google Scholar
  103. Keith, L. B. (1990) Dynamics of snowshoe hare populations.Current Mammalogy 2: 119–195.Google Scholar
  104. Kendall, D. G. (1949) Stochastic processes and population growth.Journal of the Royal Statistical Society B 11: 230–264.Google Scholar
  105. Kirkendall, L. and N. C. Stenseth (1989) Population dynamics of bark beetles, with special reference toIps typographus: contributions of applied bark beetle studies to basic research in ecology and population biology.Holarctic Ecology 12: 526–527.Google Scholar
  106. Kish, L. (1987)Statistical design for research. John Wiley and Sons, New York.Google Scholar
  107. Klimertzek, D. (1990) Population dynamics of pine-feeding insects: a historical study. pp. 3–10.In A. D. Watt, S. R. Leather, M. D. Hunter and N. A. C. Kidd (eds.)Population dynamics of forest insect. Intercept, Andover, UK.Google Scholar
  108. Krebs, C. J. (1978) A review of the Chitty hypothesis of population regulation.Canadian Journal of Zoology 56: 2463–2480.Google Scholar
  109. Krebs, C. J. (1988) The experimental approach to rodent population dynamics.Oikos 52: 143–149.Google Scholar
  110. Krebs, C. J. (1991) The experimental paradigm and long-term population studies.Ibis 133 supplement1: 3–8.Google Scholar
  111. Krebs, C. J. (1992) The role of dispersal in cyclic rodent populations. pp. 160–175.In N. C. Stenseth and W. Z. Lidicker (eds.)Animal dispersal: small mammals as a model. Chapman and Hall, London.Google Scholar
  112. Krebs, C. J. (1994)Ecology: The experimental analysis of distribution and abundance, 4th edn. Harper Collins College Publishers, New York.Google Scholar
  113. Krebs, C. J. (1996) Population cycles revised.Journal of Mammalogy 77: 8–24.Google Scholar
  114. Krebs, C. J. (1997) Vole cycle on Hokkaido: a time-series goldmine.Trends in Ecology and Evolution 12: 340–341.Google Scholar
  115. Krebs, C. J. and J. H. Myers (1974) Population cycles in small mammals.Advances in Ecological Research 8: 267–299.Google Scholar
  116. Krebs, C. J., B. L. Keller and R. H. Tamarin (1969)Microtus population biology: demographic changes in fluctuating populations ofM. ochrogaster andM. pennsylvanicus in southern Indiana.Ecology 50: 587–607.Google Scholar
  117. Krebs, C. J., S. Boutin, R. Boonstra, A. R. E. Sinclair, J. N. M. Smith, M. R. T. Dale, K. Martin and R. Turkington (1995) Impact of food and predation on the snowshoe hare cycle.Science 269: 112–115.Google Scholar
  118. Lack, D. (1954)The natural regulation of animal numbers. Oxford University Press.Google Scholar
  119. Lambin, X. and C. J. Krebs (1991) Can changes in female relatedness influence microtine population dynamics?Oikos 61: 126–132.Google Scholar
  120. Lambin, X. and C. J. Krebs (1993) Influence of female relatedness on the demography of Townsend’s vole populations in spring.Journal of Animal Ecology 62: 536–550.Google Scholar
  121. Lambin, X. and N. G. Yoccoz (1998) The impact of population kin-structure on nestling survival in Townsend’s voles,Microtus townsendii.Journal of Animal Ecology 67: 1–16.Google Scholar
  122. Lambin, X., D. Elston, S. Petty and J. L. MacKinnon (1998) Spatial asynchrony and periodic travelling waves in cyclic populations of field vole.Proceedings of the Royal Society of London B (in press).Google Scholar
  123. Larsson, T.-B. (1975) Damage caused by small rodents in Sweden.Ecological Bulletins 19: 163–173.Google Scholar
  124. Lebreton, J.-D. (1990) Modelling density dependence, environmental variability, and demographic stochasticity from population counts: An example using Wytham Wood great tits. pp. 89–102.In J. Blondel, A. Gosier, J.-D. Lebreton and R. McCleery (eds.)Population biology of the passerine birds. Springer-Verlag, Berlin.Google Scholar
  125. Lebreton, J. D., K.P. Burnham, J. Clobert and D. R. Anderson (1992) Modeling survival and testing biological hypotheses using marked animals: a unified approach with case studies.Ecological Monographs 62: 67–118.Google Scholar
  126. Leirs, H., N. C. Stenseth, J. D. Nichols, J. E. Hines, R. Verhagen and W. Verheyen (1997) Stochastic seasonality and nonlinear density-dependent factors regulate population size in an African rodent.Nature 389: 176–180.PubMedGoogle Scholar
  127. Lewontin, R. C. (1968)Population biology and evolution. Syracuse University Press, Syracuse.Google Scholar
  128. Lidicker, W. Z., Jr. (1988) Solving the enigma of the microtine ‘cycle’.Journal of Mammalogy 69: 225–235.Google Scholar
  129. Lidicker, W. Z., Jr. (1991) In defense of a multifactor perspective in population ecology.Journal of Mammalogy 72: 636–635.Google Scholar
  130. Liebhold, A., N. Kamata and T. Jacob (1996) Cyclicity and synchrony of historical outbreaks of the beech caterpillar,Quadricalcarifera punctatella (Motschulsky) in Japan.Researches on Population Ecology 38: 87–94.Google Scholar
  131. Lindén, H. (1988) Latitudinal gradients in predator-prey interactions, cyclicity and synchronism in voles and small game populations in Finland.Oikos 52: 341–349.Google Scholar
  132. Lindström, T. (1993) Qualitative analysis of a predator-prey system with limit cycles.Journal of Mathematical Biology 31: 541–561.Google Scholar
  133. Lindström, T. (1994) Global stability of a model for competing predators. pp. 233–245In M. Gyllenberg and L.-E. Persson (eds.)Analysis, algebra, and computers in mathematical research. Marcel Dekker, New York.Google Scholar
  134. Loreto, V., G. Paladin and A. Vulpiani (1996) Concept of complexity in random dynamical systems.Physical Review E 53: 2087–2098.Google Scholar
  135. Lotka, A. J. (1925)Elements of physical biology. Williams & Wilkins, Baltimore.Google Scholar
  136. May, R. M. (1972) Limit cycles in predator-prey communities.Science 177: 900–902.PubMedGoogle Scholar
  137. May, R. M. (1974) Biological populations with nonoverlapping populations: stable points, stable cycles, and chaos.Science 186: 645–647.PubMedGoogle Scholar
  138. May, R. M. (1986) When two and two do not make four: nonlinear phenomena in ecology.Proceedings of the Royal Society of London B 228: 241–266.Google Scholar
  139. Maynard Smith, J. (1982) Storming the fortress.New York Review May 13, 1982: 41–42.Google Scholar
  140. Mclntosh, R. P. (1987) Pluralism in ecology.Annual Review of Ecology and Systematics 18: 321–341.Google Scholar
  141. Messier, F. (1991) The significance of limiting and regulating factors on the demography of moose and white-tailed deer.Journal of Animal Ecology 60: 377–393.Google Scholar
  142. Moran, P. A. P. (1953a) The statistical analysis of the Canadian lynx cycle. I structure and prediction.Australian Journal of Zoology 1: 163–173.Google Scholar
  143. Moran, P. A. P. (1953b) Statistical analysis of the Canadian Lynx cycle, 2. Synchronization and meteorology.Australian Journal of Zoology 1: 291–298.Google Scholar
  144. Moss, R., A. Watson and R. Parr (1996) Experimental prevention of population cycle in red grouse.Ecology 77: 1512–1530.Google Scholar
  145. Murdoch, W. W. (1994) Population regulation in theory and practice.Ecology 75: 271–287.Google Scholar
  146. Myers, J. H. (1988) Can a general hypothesis explain population cycles of forest Lepidoptera?Advances in Ecological Research 18: 179–242.Google Scholar
  147. Myers, J. H. (1998) Synchrony in outbreaks of forest Lepidoptera: a possible example of the Moran effect.Ecology 79: 1111–1117.Google Scholar
  148. Myllymäki, A. (1979) Importance of small mammals as pests in agriculture and stored products. pp. 239–279.In D. M. Stoddart (ed.)Ecology of small mammals. Chapman and Hall, London.Google Scholar
  149. Nakata, K. (1989) Regulation of reproduction rate in a cyclic population of the red-backed vole,Clethrionomys rufocanus bedfordiae.Researches on Population Ecology 31: 185–209.Google Scholar
  150. Nicholson, A. J. (1933) The balance of animal populations.Journal of Animal Ecology Supplement 2: 132–178.Google Scholar
  151. Nicholson, A. J. (1954) An outline of the dynamics of animal populations.Australian Journal of Zoology 2: 9–65.Google Scholar
  152. Niklasson, B., B. Hörnfeldt, A. Lundkvist, S. Bjorsten and J. Leduc (1995) Temporal dynamics of Puumula virus antobody prevalence in voles and nephropathia epidemica incidence in humans.American Journal of Tropical Medicine and Hygiene 53: 134–140.PubMedGoogle Scholar
  153. Ostfeld, R. S., C. D. Canham and S. R. Pugh (1993) Intrinsic density-dependent regulation of vole populations.Nature 366: 259–261.PubMedGoogle Scholar
  154. Ostfeld, R. S. and C. D. Canham (1995) Density-dependent processes in meadow voles: an experimental approach.Ecology 76: 521–532.Google Scholar
  155. Paladin, G., M. Serva and A. Vulpiani (1995) Complexity in dynamical systems with noise.Physical Review Letters 74: 66–69.PubMedGoogle Scholar
  156. Paul, E. A. and G. P. Robertson (1989) Ecology and the agricultural sciences: a false dichotomy?Ecology 70: 1594–1597.Google Scholar
  157. Petrusewicz, K. (ed.) (1983)Ecology of the bank vole. Acta Theriologica 28 Supplement 1.Google Scholar
  158. Pitelka, F. A. and G. O. Batzli (1993) Distribution, abundance and habitat use by lemmings on the north slope of Alaska. pp. 213–236.In N. C. Stenseth and R. A. Ims (eds.)The biology of lemming. Academic Press, London.Google Scholar
  159. Pollock, K. H., J. D. Nichols, C. Brownie and J. E. Hines (1990) Statistical inference for capture-recapture experiments.Wildlife Monographs 107: 1–97.Google Scholar
  160. Portier, C., M. Festa Bianchet, J.-M. Gaillard, J. T. Jorgenson and N. G. Yoccoz (1998) Effects of density and weather on survival of bighorn sheep lambs (Ovis canadensis). Journal of Zoology, London (in press).Google Scholar
  161. Ranta, E. and V. Kaitala (1997) Travelling waves in vole population dynamics.Nature 390: 456.Google Scholar
  162. Ranta, E., V. Kaitala and P. Lundberg (1997) The spatial dimension in population fluctuations.Science 278: 1621–1623.PubMedGoogle Scholar
  163. Rosenbaum, P. R. (1995)Observational studies. Springer-Verlag, New York.Google Scholar
  164. Royama, T. (1992)Analytical population dynamics. Chapman and Hall, London.Google Scholar
  165. Ruxton, G. D. and M. Doebeli (1996) Spatial self-organization and persistence of transients in a metapopulation model.Proceedings of the Royal Society of London B 263: 1153–1158.Google Scholar
  166. Saitoh, T. (1981) Control of female maturation in high density populations of the red-backed vole,Clethrionomys rufocanus bedfordiae.Journal of Animal Ecology 50: 79–87.Google Scholar
  167. Saitoh, T. (1991) The effects and limits of territoriality on population regulation in grey red-backed voles,Clethrionomys rufocanus bedfordiae.Researches on Population Ecology 33: 367–386.Google Scholar
  168. Saitoh, T. and K. Takahashi (1998) The role of vole populations in prevalence of the parasite (Echinococcus multilocularis) in foxes.Researches on Population Ecology 40: 97–105.Google Scholar
  169. Saitoh, T., N. C. Stenseth and O. N. Bjørnstad (1997) Density dependence in fluctuating grey-sided vole populations.Journal of Animal Ecology 66: 14–24.Google Scholar
  170. Saitoh, T., O. N. Bjørnstad and N. C. Stenseth (1998a) Densitydependence in voles and mice: a comparative study.Ecology (in press).Google Scholar
  171. Saitoh, T., N. C. Stenseth and O. N. Bjørnstad (1998b) The population dynamics of the voleClethrionomys rufocanus in Hokkaido, Japan.Researches on Population Ecology 40: 61–76.Google Scholar
  172. Saucy, F. (1994) Density dependence in time series of the fossorial form of the water vole,Arvicola terrestris.Oikos 71: 381–392.Google Scholar
  173. Sauer, J. R. and M. S. Boyce (1983) Density dependence and survival of elk in Northwestern Wyoming.Journal of Wildlife Management 47: 31–37.Google Scholar
  174. Seber, G. A. F. (1992) A review of estimating animal abundance II.International Statistical Review 60: 129–166.Google Scholar
  175. Shigesada, N. and K. Kawasaki (1997)Biological invasions: theory and practice. Oxford University Press, Oxford.Google Scholar
  176. Sinclair, A. R. E. (1989) Population regulation in animals. pp. 197–241.In J. M. Cherrett (ed.)Ecological concepts. Blackwell Scientific Publications, Oxford.Google Scholar
  177. Sinclair, A. R. E. and R. P. Pech (1996) Density dependence, stochasticity, compensation and predator regulation.Oikos 75: 164–173.Google Scholar
  178. Sittler, B. (1995) Response of stoats (Mustela erminea) to a fluctuating lemming (Dicrostonyx groenlandicus) population in north east Greenland: preliminary results from a long-term study.Annales Zoologici Fennici 32: 79–92.Google Scholar
  179. Sokal, R. R. and N. L. Oden (1978) Spatial autocorrelation in biology. I methodology, II application.Biological Journal of the Linnean Society 10: 199–228.Google Scholar
  180. Stacy, J. E., P. E. Jorde, H. Steen, R. A. Ims, A. Purvis and K. S. Jakobsen (1997) Lack of concordance between mtDNA gene flow and population density fluctuations in the bank vole.Molecular Ecology 6: 751–759.PubMedGoogle Scholar
  181. Steen, H. (1994) Low survival of long distance dispersers of the root vole (Microtus oeconomus).Annales Zoologici Fennici 31: 271–274.Google Scholar
  182. Steen, H., R. A. Ims and G. A. Sonerud (1996) Spatial and temporal patterns of small-rodent population dynamics at a regional scale.Ecology 77: 2365–2372.Google Scholar
  183. Stenseth, N. C. (1977a) Evolutionary aspects of demographic cycles: the relevance of some models of cycles for microtine fluctuations.Oikos 29: 525–538.Google Scholar
  184. Stenseth, N. C. (ed.) (1977b) Population dynamics of the field voleMicrotus agrestis: a modelling study.Oikos 29: 445–641.Google Scholar
  185. Stenseth, N. C. (1981) On Chitty’s theory for fluctuating populations: the importance of polymorphisms in the generation of regular cycles.Journal of theoretical Biology 90: 9–36.PubMedGoogle Scholar
  186. Stenseth, N. C. (1984) Why mathematical models in evolutionary ecology? pp. 239–267.In J. Cooley and F. B. Golley (eds.)Trends in ecological research of the 1980’s. Plenum Press, New-York.Google Scholar
  187. Stenseth, N. C. (1985a) Models of bank vole and wood mouse populations.Symposium of the Zoological Society of London 55: 339–376.Google Scholar
  188. Stenseth, N. C. (ed.) (1985b) Clethrionomysbiology: population dynamics, dispersal, reproduction and social structure. Annales Zoologici Fennici vol. 22, No. 3.Google Scholar
  189. Stenseth, N. C. (1986) On the interaction between stabilizing social factors and destabilizing trophic factors in small rodent populations.Theoretical Population Biology 29: 365–384.Google Scholar
  190. Stenseth, N. C. (1995a) The long-term study of voles, mice and lemmings: homage to Robert Collett.Trends in Ecology and Evolution 10: 512.Google Scholar
  191. Stenseth, N. C. (1995b) Snowshoe hare populations: squeezed from below and above.Science 269: 1061–1062.PubMedGoogle Scholar
  192. Stenseth, N. C. and R. A. Ims (1993a) The history of lemming research: from the Nordic Sagas toThe Biology of Lemmings. pp. 3–34.In N. C. Stenseth and R. A. Ims (eds.)The biology of lemming. Academic Press, London.Google Scholar
  193. Stenseth, N. C. and R. A. Ims (1993b) Population dynamics of lemmings: temporal and spatial variation — an introduction. pp. 61–96.In N. C. Stenseth and R. A. Ims (eds.)The biology of lemming. Academic Press, London.Google Scholar
  194. Stenseth, N. C. and R. A. Ims (eds.) (1993c)The biology of lemming. Academic Press, London.Google Scholar
  195. Stenseth, N. C. and A. Łomnicki (1990) On the Charnov-Finerty hypothesis: the unproblematic transition from docile to aggressive and the problematic transition from aggressive to docile.Oikos 58: 234–238.Google Scholar
  196. Stenseth, N. C., O. N. Bjørnstad and T. Saitoh (1996a) A gradient from stable to cyclic populations ofClethrionomys rufocanus in Hokkaido, Japan.Proceedings of the Royal Society of London B 263: 1117–1126.Google Scholar
  197. Stenseth, N. C., O. N. Bjørnstad and W. Falck (1996b) Is spacing behaviour coupled with predation causing the microtine density cycle? A synthesis of process-oriented and pattern-oriented studies.Proceedings of the Royal Society of London B 263: 1423–1435.Google Scholar
  198. Stenseth, N. C., W. Falck, O. N. Bjørnstad and C. J. Krebs (1997) Population regulation in snowshoe hare and lynx populations: asymmetric food web configurations between the snowshoe hare and the lynx.Proceedings of the National Academy of Science of the USA 94: 5147–5152.Google Scholar
  199. Stenseth, N. C., R. Boonstra, N. G. Yoccoz and C. J. Krebs (1998a) Population cycles in lemmings and voles: dynamics and demographic signatures of non-linearity. (in review).Google Scholar
  200. Stenseth, N. C., O. N. Bjørnstad and T. Saitoh (1998b) Seasonal forcing on the dynamics ofClethrionomys rufocanus: modelling the geographic gradient in population dynamicsResearches on Population Ecology 40: 85–95.Google Scholar
  201. Stenseth, N. C., W. Falck, K. S. Chan, O. N. Bjørnstad, M. O’Donoghue, H. Tong, R. Boonstra, S. Boutin, C. J. Krebs and N. G. Yoccoz (1998c) From ecological patterns to ecological processes: phase- and density-dependencies in the Canadian lynx cycle. (in review).Google Scholar
  202. Stenseth, N.C., K.-S. Chan, E. Framstad and H. Tong (1998d) Phase- and density dependency dynamics in lemming populations: statistical and mathematical modelling of periodic temporal fluctuations with a fixed periodic component sustained by environmental stochasticity. (in review).Google Scholar
  203. Stiling, P. (1988) Density-dependent processes and key factors in insect populations.Journal of Animal Ecology 57: 581–594.Google Scholar
  204. Strong, D. (1986) Density-vague population change.Trends in Ecology and Evolution 1: 39–42.Google Scholar
  205. Sugihara, G. (1994) Nonlinear forecasting for the classification of natural time series.Philosophical Transactions of the Royal Society of London A 348: 477–495.Google Scholar
  206. Sutherland, W. J. (1996)From individual behaviour to population ecology. Oxford University Press, Oxford.Google Scholar
  207. Sæther, B.-E. (1997) Environmental stochasticity and population dynamics of large herbivores: a search for mechanisms.Trends in Ecology and Evolution 12: 143–149.Google Scholar
  208. Taitt, M. J. and C. J. Krebs (1985) Population dynamics and cycling. pp. 567–620.In R. H. Tamarin (ed.)Biology of New World Microtus. Special Publication of the American Society of Mammalogists, No. 8.Google Scholar
  209. Tamarin, R. H. (ed.) (1985)Biology of New World Microtus, The American Society of Mammalogists, No. 8.Google Scholar
  210. Tenow, O. (1972) The outbreaks ofOporinia autumnata Bkh. andOperophtera spp. (Lep., Geomtridae) in the Scandinavian mountain chain and northern Finland 1862–1968.Zoologiska Bidrag från Uppsala,Supplement 2: 1–107.Google Scholar
  211. Thompson, M. E. (1997)Theory of sample surveys. Chapman and Hall, London.Google Scholar
  212. Tjøstheim, D. (1994) Non-linear time series: a selective review.Scandinavian Journal of Statistics 21: 97–130.Google Scholar
  213. Tong, H. (1977) Some comments on the Canadian lynx data — with discussion.Journal of the Royal Statistical Society A 140: 432–435 and 448–468.Google Scholar
  214. Tong, H. (1990)Non-linear time series: a dynamical system approach. Oxford University Press.Google Scholar
  215. Tong, H. (1995) A personal overview of non-linear time series analysis from a chaos perspective.Scandinavian Journal of Statistics 22: 399–421.Google Scholar
  216. Turchin, P. (1990) Rarity of density dependence or regulation with lags?Nature 344: 660–663.Google Scholar
  217. Turchin, P. (1993) Chaos and stability in rodent population dynamics: evidence from non-linear time-series analysis.Oikos 68: 167–172.Google Scholar
  218. Turchin, P. (1995a) Population regulation: old arguments and a new synthesis. pp. 19–40.In N. Cappuccino and P. Price (eds.)Population dynamics. Academic Press, New York.Google Scholar
  219. Turchin, P. (1995b) Chaos in microtine populations.Proceedings of the Royal Society of London B 262: 357–361.Google Scholar
  220. Turchin, P. (1996) Nonlinear time-series modeling of vole population fluctuations.Researches on Population Ecology 38: 121–132.Google Scholar
  221. Turchin, P. and I. Hanski (1997) An empirically based model for latitudinal gradient in vole population dynamics.American Naturalist 149: 842–874.Google Scholar
  222. Volterra, V. (1931)Leçons sur la théorie mathématique de la lutte pour la vie. Marcel Brelot, Paris.Google Scholar
  223. Vulpiani, A. (1995) On the effect of the noise in dynamical systems.Il nuovo cimento 17: 653–660.Google Scholar
  224. Warkowska-Dratnal, H. and N. C. Stenseth (1985) Dispersal and the microtine cycle: comparison of two hypotheses.Oecologia 65: 468–477.Google Scholar
  225. Wiens, J. A. (1989) Spatial scaling in ecology.Functional Ecology 3: 385–397.Google Scholar
  226. Woiwod, I. P. and I, Hanski (1992) Patterns of density dependence in moth and aphids.Journal of Animal Ecology 61: 619–629.Google Scholar
  227. Yao, Q., H. Tong, B. Finkenstäd and N. C. Stenseth (1998) Common structure in panels of short time series. (in review).Google Scholar
  228. Yoccoz, N. G., K. Nakata, N. C. Stenseth and T. Saitoh (1998) The demography of the voleClethrionomys rufocanus: from mathematical and statistical models to further field studies.Researches on Population Ecology 40: 107–121.Google Scholar
  229. Yule, G. U. (1927) On a method of investigating periodicities in disturbed series with special reference to Wolfer’s sunspot numbers.Philosophical Transactions of the Royal Society of London A 226: 267–98.Google Scholar

Copyright information

© Society of Population Ecology 1998

Authors and Affiliations

  • Nils Chr Stenseth
    • 1
    • 2
  • Takashi Saitoh
    • 1
    • 3
  • Nigel G. Yoccoz
    • 1
    • 4
  1. 1.Centre for Advanced StudyNorwegian Academy of Science and LettersOsloNorway
  2. 2.Division of Zoology, Department of BiologyUniversity of OsloOsloNorway
  3. 3.Hokkaido Research CenterForestry and Forest Products Research InstituteSapporoJapan
  4. 4.Department of Arctic EcologyNorwegian Institute for Nature ResearchTromsøNorway

Personalised recommendations