Advertisement

Lasers in Medical Science

, Volume 12, Issue 3, pp 200–208 | Cite as

Tumour visualization in a murine model by time-delayed fluorescence of sulphonated aluminium phthalocyanine

  • R. Cubeddu
  • G. Canti
  • P. Taroni
  • G. Valentini
Original Articles

Abstract

Mice bearing the MS-2 fibrosarcoma were administered 0.25, 0.5 or 1 mg kg-1 body weight (b.w.) of sulphonated aluminium phthalocyanine (AlS2Pc) (with average degree of sulphonation of 2.1), and time-gated fluorescence images were acquired up to 6 h after the injection. Different excitation wavelengths (610, 650 and 670 nm) were tested. Red light excitation and 3 ns delayed detection allow one to minimize natural fluorescence and scattered laser light, respectively. The best conditions for tumour detection are reached under either 650 or 670 nm Excitation, 2–4 h after the administration of either 0.5 or 1 mg kg-1 b.w. of AlS2Pc. In these situations, the average fluorescence contrast between tumour area and surrounding healthy tissue is > 2, providing a clear identification of the pathological region. However, tumour localization is possible even after the injection of 0.25 mg kg-1 b.w. of sensitizer. In conclusion, under low power excitation (< 100ΜW cm-2), the technique allows real time detection of an intradermal tumour with good contrast.

Key words

Fluorescence Imaging Phthalocyanine Timegated imaging Tumour detection 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dougherty TJ. Photosensitizers: therapy and detection of malignant tumors.Photochem Photobiol 1987,45: 879–89CrossRefPubMedGoogle Scholar
  2. 2.
    Henderson BW, Dougherty TJ. How does photodynamic therapy work?Photochem Photobiol 1992,55: 145–57CrossRefPubMedGoogle Scholar
  3. 3.
    Kessel D. Tumor localization and photosensitization by derivatives of hematoporphyrin: a review.IEEE J Quant Electron 1987,QE-23: 1718–20CrossRefGoogle Scholar
  4. 4.
    Spikes JD. Phthalocyanines as photosensitizers in biological systems and for the photodynamic therapy of tumors.Photochem Photobiol 1986,43: 691–9CrossRefPubMedGoogle Scholar
  5. 5.
    Rosenthal I. Phthalocyanines as photodynamic photosensitizers.Photochem Photobiol 1991,53: 859–70PubMedGoogle Scholar
  6. 6.
    Baert L, Berg R, van Damme B et al. Clinical fluorescence diagnosis of human bladder carcinoma following low-dose Photofrin injection. In: Svaasand O (ed.)Future Trends in Biomedical Applications of Lasers, Vol 1525. Bellingham: SPIE, 1991: pp. 385–90Google Scholar
  7. 7.
    Balchum OJ, Profio AE, Razum N. Ratioing fluorometer probe for localizing carcinoma in situ in bronchi of the lung.Photochem Photobiol 1987,46: 887–91CrossRefPubMedGoogle Scholar
  8. 8.
    Kato H, Aizawa K, Ono J et al. Clinical measurements of tumor fluorescence using a new diagnostic system with hematoporphyrin derivative, laser photoradiation, and a spectroscope.Lasers Surg Med 1984,4: 49–58CrossRefPubMedGoogle Scholar
  9. 9.
    Andersson-Engels S, Ankerst J, Johansson J, Svanberg K., Svanberg S.. Laser-induced fluorescence in malignant and normal tissue of rats injected with benzoporphyrin derivative.Photochem Photobiol 1993,57: 978–83CrossRefPubMedGoogle Scholar
  10. 10.
    Andersson-Engels S, Johansson J, Stenram U, Svanberg K, Svanberg S. Malignant tumor and atherosclerotic plaque diagnosis using laser-induced fluorescence.IEEE J Quant Electron 1990,QE-26: 2207–17CrossRefGoogle Scholar
  11. 11.
    Profio E. Laser excited fluorescence of hematoporphyrin derivative for diagnosis of cancer.IEEE J. Quantum Electron 1984,QE-20: 1502–7CrossRefGoogle Scholar
  12. 12.
    Andersson-Engels S, Johansson J, Svanberg S. Medical diagnostic system based on simultaneous multispectral fluorescence imaging.Appl Opt 1994,34: 8022–6CrossRefGoogle Scholar
  13. 13.
    Baumgartner R, Fisslinger H, Jocham D et al. A fluorescence imaging device for endoscopic detection of early stage cancer—Instrumental and experimental studies.Photochem Photobiol 1987,46: 759–63CrossRefPubMedGoogle Scholar
  14. 14.
    Brodbeck KJ, Profio AE, Frewin T, Balchum OJ. A system for real time fluorescence imaging in color for tumor diagnosis.Med Phys 1987,14: 637–9CrossRefPubMedGoogle Scholar
  15. 15.
    Monnier Ph, Savary M, Fontolliet Ch et al. Photodetection and photodynamic therapy of ‘early’ squamous cell carcinoma of the pharynx, oesophagus and tracheo-bronchial tree.Lasers Surg Med 1990,5: 149–69CrossRefGoogle Scholar
  16. 16.
    Wagnieres G, Braichotte D, Chatelain A et al. Photodetection of early cancer in the upper aerodigestive tract and the bronchi using Photofrin II and colorectal adenocarcinoma with fluoresceinated monoclonal antibodies. In: SvaasandO (ed)Future Trends in Biomedical Applications of Lasers, Vol 1525. Bellingham: SPIE, 1991: pp. 219–236Google Scholar
  17. 17.
    Schuitmaker JJ, van Leengoed HLLM, van der Veen N, Dubbelman TMAR, Star WM. Laser-induced in vivo fluorescence of Bacteriochlorin a: preliminary study.Lasers Med Sci 1993,8: 39–42CrossRefGoogle Scholar
  18. 18.
    van Leengoed E, Versteeg J, van der Veen N, van den Berg-Blok A, Marijnissen H, Star W. Tissue-localizing properties of some photosensitizers studied byin vivo fluorescence imaging.J Photochem Photobiol B 1990,6: 110–9Google Scholar
  19. 19.
    Kohl M, Neukammer J, Sukowsky U et al. Imaging of tumors by time-delayed laser-induced fluorescence. In: Svaasand O (ed.)Future Trends in Biomedical Applications of Lasers, Vol 1525. Bellingham: SPIE, 1991: pp. 26–34Google Scholar
  20. 20.
    Cubeddu R, Taroni P, Valentini G. Time-gated fluorescence imaging for cancer diagnosis.Opt Eng 1993,32: 320–5CrossRefGoogle Scholar
  21. 21.
    Cubeddu R, Canti G, Taroni P, Valentini G. Time-gated fluorescence imaging for the diagnosis of tumors in a murine model.Photochem Photobiol 1993,57: 480–5CrossRefPubMedGoogle Scholar
  22. 22.
    Cubeddu R, Canti G, Taroni P, Valentini G. Study of porphyrin fluorescence in tissue samples of tumourbearing mice.J Photochem Photobiol B 1995,29: 171–8CrossRefPubMedGoogle Scholar
  23. 23.
    Ambroz M, MacRobert AJ, Morgan J, Rumbles G, Foley MSC, Phillips D. Time-resolved fluorescence spectroscopy and intracellular imaging of disulfonated aluminum phthalocyanine.J Photochem Photobiol B 1994,22: 105–17CrossRefPubMedGoogle Scholar
  24. 24.
    Cubeddu R, Ramponi R, Taroni P, Canti G. Time-gated fluorescence spectroscopy of porphyrin derivatives and aluminum phthalocyanine incorporated in vivo in a murine ascitic tumour model.J Photochem Photobiol B 1991,11: 319–28CrossRefPubMedGoogle Scholar
  25. 25.
    Cubeddu R, Canti G, Pifferi A, Taroni P, Valentini G.In vivo absorption spectrum of disulphonated aluminium phthalocyanine in a murine tumour model.J Photochem Photobiol B 1997 (in press)Google Scholar
  26. 26.
    Van Gemert MJC, Jacques SL, Sterenborg HJCM, Star WM. Skin optics.IEEE Trans Biomed Eng 1989,36: 1146–54CrossRefPubMedGoogle Scholar
  27. 27.
    Marchesini R, Pignoli E, Tomatis S et al. Ex vivo optical properties of human colon tissue.Lasers Surg Med 1994,15: 351–7CrossRefPubMedGoogle Scholar

Copyright information

© W.B. Saunders Company Ltd 1997

Authors and Affiliations

  • R. Cubeddu
    • 1
  • G. Canti
    • 2
  • P. Taroni
    • 1
  • G. Valentini
    • 1
  1. 1.C.E.Q.S.E.-C.N.R.Politecnico di MilanoMilanoItaly
  2. 2.Dipartimento di FarmacologiaUniversità degli StudiMilanoItaly

Personalised recommendations