Israel Journal of Mathematics

, Volume 42, Issue 1–2, pp 87–98 | Cite as

Primarite DeL p(L r), 1<p,r<∞

  • Michele Capon


In this article we show thatL p(L r) is primary forp andr in ]1,+∞[. If (h k) k≧1 denote the Haar basis, we begin with a study of the sequence (h kh i) and, in particular, the space generated by a subsequence of this sequence. In the first part we study the base ofL p(L r) and in the second part we show that this space is primary.


Haar Basis Nous Allons Nous Permet Cette Expression Nous Appellerons 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. J. Aldous,Unconditional bases and martingales in L p(F), Proc. Camb. Phil. Soc.85 (1979).Google Scholar
  2. 2.
    D. E. Alspach, P. Enflo and E. Odell,On the structure of separable ℒ p spaces, Studia Math.60 (1977).Google Scholar
  3. 3.
    M. Capon,Primarité de L p(l r), 1 <p, r<∝, Israel J. Math.36 (1980), 346–364.MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    J. L. B. Gamlen and R. J. Gaudet,On subsequences of the Haar system in L p[0, 1], 1<p<∝, Israel J. Math.15 (1973), 404–413.MATHMathSciNetGoogle Scholar
  5. 5.
    J. Lindenstrauss and L. Tzafriri,Classical Banach Spaces II, Function Spaces, Springer-Verlag, Berlin, 1979.MATHGoogle Scholar
  6. 6.
    B. Maurey,Système de Haar, Séminaire Maurey-Schwartz 1974–75, éxposé No. 2.Google Scholar
  7. 7.
    G. Pisier,Les inégalités de Khintchine-Kahane, Séminaire Maurey-Schwartz 1977–78, éxposé No. 7.Google Scholar

Copyright information

© The Weizmann Science Press of Israel 1982

Authors and Affiliations

  • Michele Capon
    • 1
  1. 1.Université de Paris-SudOrsay, ParisFrance

Personalised recommendations