Israel Journal of Mathematics

, Volume 32, Issue 2–3, pp 131–144 | Cite as

The ar property and chain conditions in group rings

  • P. F. Smith


It is shown that ifJ is the ring of integers or a field andG a group such that the augmentation ideal of the group ringJG has the AR property then the ringJG and the groupG satisfy certain chain conditions.


Positive Integer Normal Subgroup Left Ideal Group Ring Noetherian Ring 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. W. Brewer, D. L. Costa and E. L. Lady,Prime ideals and localization in commutative group rings, J. Algebra34 (1975), 300–308.MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    A. Kurosh,The Theory of Groups, Vol. I, Chelsea, New York, 1955.Google Scholar
  3. 3.
    A. I. Lichtman,The residual nilpotency of the augmentation ideal and the residual nilpotency of some classes of groups, Israel J. Math.26 (1977), 276–293.MATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    M. M. Parmenter and S. K. Sehgal,Idempotent elements and ideals in group rings and the intersection theorem, Arch. Math.24 (1973), 586–600.MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    D. S. Passman,The Algebraic Structure of Group Rings, Wiley-Interscience, New York, 1977.MATHGoogle Scholar
  6. 6.
    D. J. S. Robinson,Finiteness Conditions and Generalized Soluble groups, Vol. I, Springer-Verlag, Berlin, 1972.Google Scholar
  7. 7.
    O. Zariski and P. Samuel,Commutative Algebra, Vol. I, Van Nostrand, Princeton, 1965.Google Scholar

Copyright information

© The Weizmann Science Press of Israel 1979

Authors and Affiliations

  • P. F. Smith
    • 1
  1. 1.Department of MathematicsUniversity of GlasgowGlasgowScotland, U.K.

Personalised recommendations