Israel Journal of Mathematics

, Volume 72, Issue 1–2, pp 109–117 | Cite as

Hopf-algebraic structure of combinatorial objects and differential operators

  • Robert Grossman
  • Richard G. Larson


A Hopf-algebraic structure on a vector space which has as basis a family of trees is described, and we survey some applications of this structure to combinatorics and to differential operators. Some possible future directions for this work are indicated.


Differential Operator Hopf Algebra Rooted Tree Formal Power Series Label Tree 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. C. Butcher,The Numerical Analysis of Ordinary Differential Equations, Wiley, New York, 1987.MATHGoogle Scholar
  2. 2.
    E. Catalan,Note sur une équation aux différences finies, J. Math. Pures Appl. (1)3 (1838), 508–516.Google Scholar
  3. 3.
    R. Grossman and R. G. Larson,Hopf-algebraic structure of families of trees, J. Algebra126 (1989), 184–210.MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    R. Grossman and R. G. Larson,Labeled trees and the algebra of differential operators, inAlgorithms and Graphs (R. Bruce Richter, ed.), Contemporary Mathematics, Vol. 89, Am. Math. Soc., Providence, 1989, pp. 81–87.Google Scholar
  5. 5.
    R. Grossman and R. G. Larson,Solving nonlinear equations from higher order derivations in linear stages, Adv. in Math.82 (1990), 180–202.MATHCrossRefGoogle Scholar
  6. 6.
    R. Grossman and R. G. Larson,Symbolic computation of derivations using labeled trees, J. Symbolic Comp., to appear.Google Scholar
  7. 7.
    R. Grossman and R. G. Larson,Labeled trees and the efficient computation of derivations, inProceedings of the ACM-SIGSAM 1989 International Symposium on Symbolic and Algebraic Computation, ACM, 1989, pp. 74–80.Google Scholar
  8. 8.
    N. Jacobson,Lie Algebras, Interscience, New York, 1962.MATHGoogle Scholar
  9. 9.
    S. A. Joni and G.-C. Rota,Coalgebras and bialgebras in combinatorics, Stud. Appl. Math.61 (1979), 93–139; reprinted inUmbral Calculus and Hopf Algebras, Am. Math. Soc., Providence, 1982, pp. 1–47.MATHMathSciNetGoogle Scholar
  10. 10.
    J. W. Milnor and J. C. Moore,On the structure of Hopf algebras, Ann. Math. (2)81 (1965), 211–264.CrossRefMathSciNetGoogle Scholar
  11. 11.
    W. D. Nichols,The Kostant structure theorems for K/k-Hopf algebras, J. Algebra97 (1985), 313–328.MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    W. Nichols and M. Sweedler,Hopf algebras and combinatorics, inUmbral Calculus and Hopf Algebras, Am. Math. Soc., Providence, 1982, pp. 49–84.Google Scholar
  13. 13.
    W. Nichols and B. Weisfeiler,Differential formal groups of J. F. Ritt, Am. J. Math.104 (1982), 943–1003.MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    M. Sweedler,Hopf Algebras, W. A. Benjamin, New York, 1969.Google Scholar

Copyright information

© The Weizmann Science Press of Israel 1990

Authors and Affiliations

  • Robert Grossman
    • 1
  • Richard G. Larson
    • 1
  1. 1.Department of MathematicsUniversity of Illinois at ChicagoChicagoUSA

Personalised recommendations