Skip to main content
Log in

Frequency-domain lifetime imaging methods at unilever research

  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Fluorescence lifetime imaging methodology has been successfully implemented at Unilever Research in a frequency-domain manner. The experimental rig constructed comprises a wide-bandwidth electrooptic modulator operating on a CW argon-ion laser. The modulated excitation with a typical upper modulation frequency limit of 200 MHz falls on macroscopic samples and the resultant scattered light or fluorescence emission is then imaged onto a custom gain-modulatable image intensifier and slow-scan CCD camera combination. Phase adjustment of the image intensifier relative to the laser modulator is achieved by the RF function generator driving the intensifier. Both homodyne and heterodyne (500-Hz) strobing modes are employed to generate a double image stack (scattered light reference and fluorescence emission) comprising an image sequence as a function of instrumental phase difference. These image stacks are analyzed by Fourier least-squares methods to yield lifetime images by both phase delay and normalized demodulation. Correct operation of the apparatus is deduced from the direct imaging of a quencher-induced lifetime variation of BODIPY disulfonate over a range of concentrations. A typical industrially relevant sample, comprising an investigation of the lifetime aspects of human dental enamel autofluorescence at 50MHz modulation frequency, is given. This shows that there are real emission lifetime decreases of about 0.5 nsec in white-spot lesion areas compared to the surrounding sound enamel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. R. Lakowicz and K. L. Berndt (1991)Rev. Sci. Instrum. 62(7), 1727–1734.

    Article  CAS  Google Scholar 

  2. J. R. Lakowicz, I. Gryczynski, H. Szmacinski, and K. Nowaczyk (1991)SPIE 1599, 227–243.

    Article  Google Scholar 

  3. R. M. Clegg, B. Fedderson, E. Gratton, and T. M. Jovin (1992)SPIE 1640, 448–460.

    Article  Google Scholar 

  4. T. W. J. Gadella, T. M. Jovin, and R. M. Clegg (1993)Biophys. Chem. 48, 221–239.

    Article  CAS  Google Scholar 

  5. C. G. Morgan, A. C. Mitchell, and J. G. Murray (1992)J. Microsc. 165(1), 49–60.

    Google Scholar 

  6. C. G. Morgan, A. C. Mitchell, and J. G. Murray (1992)Trends Anal. Chem. 11(1), 32–41.

    Article  CAS  Google Scholar 

  7. T. Ni and L. A. Melton (1991)Appl. Spectrosc. 45(6), 938–943.

    Article  CAS  Google Scholar 

  8. K. Sasaki, M. Koshioka, and H. Masuhara (1991)Appl. Spectrosc. 45(6), 1041–1045.

    Article  CAS  Google Scholar 

  9. K. P. Ghiggino, M. R. Harris, and P. G. Spizzirri (1992)Rev. Sci. Instrum. 63(5), 2899–3002.

    Article  Google Scholar 

  10. E. P. Buurman, R. Sanders, A. Draaijer, H. C. Gerritsen, J. J. F. van Veen, P. M. Houpt, and Y. K. Levine (1992)Scanning 14, 155–159.

    Google Scholar 

  11. D. W. Piston, D. R. Sandison, and W. W. Webb (1992)SPIE 1640, 379–390.

    Article  CAS  Google Scholar 

  12. C. Y. Dong, P. T. C. So, T. French, and E. Gratton (1995)Biophys. J. 69, 2234–2242.

    Article  PubMed  CAS  Google Scholar 

  13. R. B. Thompson and J. R. Lakowicz (1993)Anal. Chem. 65, 853–856.

    Article  CAS  Google Scholar 

  14. R. Sanders, A. Draaijer, H. C. Gerritsen, P. M. Houpt, and Y. K. Levine (1995)Anal. Biochem. 227, 302–308.

    Article  PubMed  CAS  Google Scholar 

  15. J. R. Lakowicz, H. Szmacinski, K. Nowaczyk, and M. L. Johnson (1992)Cell Calcium 13, 131–147.

    Article  PubMed  CAS  Google Scholar 

  16. J. R. Lakowicz, H. Szmacinski, K. Nowaczyk, K. L. Berndt, and M. L. Johnson (1993) in O. S. Wolfbeis (Ed.),Fluorescence Spectroscopy, Springer, Berlin, pp. 129–146.

    Google Scholar 

  17. J. R. Lakowicz, H. Szmacinski, K. Nowaczyk, and M. L. Johnson (1992)Proc. Natl. Acad. Sci. USA 89, 1271–1275.

    Article  PubMed  CAS  Google Scholar 

  18. J. Karolin, L. B. A. Johansson, L. Strandberg, and T. Ny (1994)J. Am. Chem. Soc. 116, 7801–7806.

    Article  CAS  Google Scholar 

  19. H. Bjelkhagen, F. Sundstrom, B. Angmar-Mansson, and H. Ryden (1982)Swed. Dent J. 6, 1–7.

    PubMed  CAS  Google Scholar 

  20. F. Sundstrom, K. Fredriksson, S. Montan, U. Hafstrom-Bjorkman, and J. Strom (1985)Swed. Dent. J. 9, 71–80.

    PubMed  CAS  Google Scholar 

  21. T. Araki, E. Miyazaki, T. Kawata, and K. Miyata (1990)Appl. Spectrosc. 44(4), 627–631.

    Article  CAS  Google Scholar 

  22. U. Hafstrom-Bjorkman, F. Sundstrom, E. de Josselin de Jong, A. Oliveby, and B. Angmar-Mansson (1992)Caries Res. 26, 241–247.

    Article  PubMed  CAS  Google Scholar 

  23. J. J. Birmingham, E. G. Mahers, and R. K. Chestere (1992)J. Dent. Res. 71, A387.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Birmingham, J.J. Frequency-domain lifetime imaging methods at unilever research. J Fluoresc 7, 45–54 (1997). https://doi.org/10.1007/BF02764576

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02764576

Key Words

Navigation