Skip to main content
Log in

Selection and characterization of mexican strains ofBacillus thuringiensis active against four major lepidopteran maize pests

Sélection et caractérisation d’isolats mexicains deBacillus thuringiensis actifs contre quatre Lépidoptères majeurs du maïs

  • Published:
Entomophaga Aims and scope Submit manuscript

Abstract

In order to isolate novel delta-endotoxins fromBacillus thuringiensis Berliner, a total of 426 native isolates (in varying numbers for each pest) were screened against four major maize pests: corn earworm,Helicoverpa zea; fall armyworm,Spodoptera frugiperda; southwestern corn borer,Diatraea graridiosella, and sugarcane borer,Diatraea saccharalis. Spore-crystal complexes from the isolates were integrated into semi-artificial diets of each pest and mortality was assessed 7 days after treatment. A total of 25 isolates were selected on the basis of highest larval mortality against at least one insect species. There was no correspondence of the most toxic isolates when tested against the four different insect species. Most of the 25 selected isolates caused higher toxicities against all four pests than the standard strain HD-1, regardless of not achieving 100% mortality in any bioassay.H. zea demonstrated the highest level of mortality (96%) and was susceptible to the largest number of isolates (98). None of the other insect species were found susceptible at levels greater than 60%. All the selected active strains were isolated from stored grain dusts (except for LBIT-167), and had bipyramidal crystals with Cry I-like proteins. Most isolates also formed an associated square (cubic) inclusion, with Cry Il-like proteins according to SDS-PAGE analysis of their parasporal bodies. The most active isolates will be subjected to further studies, in order to identify putative novel genes to be expressed in transgenic maize

Résumé

Les 426 souches deBacillus thuringiensis Berliner isolées ont été testées sur quatre ravageurs importants du maïs,Helicoverpa zea, Spodoptera frugiperda, Diatraea grandiosella, Diatraea saccharalis dans le but d’identifier de nouvelles delta endotoxines. Le complexe spore-cristal obtenu à partir de chacun des isolats a été incorporé dans un milieu nutritif artificiel pour insecte et la mortalité a été relevée après sept jours de traitements. Vingt-cinq isolats ont été sélectionnés sur la base d’une toxicité élevée sur les larves d’au moins une espèce. Aucun des isolats actifs ne s’est révélé actif à la fois contre les quatre espèces d’insectes étudiées. La plupart des 25 isolats sélectionnés ont montré une toxicité supérieure à celle de la souche de reférence HD- 1, que la mortalité ait atteint ou non 100 %.H. zea s’est révélée être l’espèce la plus sensible (96 % de mortalité) au plus grand nombre d’isolats (98). Aucune des trois autre espèces n’a montré plus de 60 % mortalité. Toutes les souches actives ont été isolées à partir de poussières de graines stockées (excepté l’isolat LBIT-167) et produisaient des cristaux bipyramidaux. L’analyse du contenu protéique des cristaux en gel de polyacrylamide-SDS a montré que les cristaux bipyramidaux contenaient des protéines de type Cryl et que les cristaux cubiques associés produits par la plupart des isolats contenaient des protéines de type Cryll. Les souches les plus actives seront analysées de façon plus approfondie afin de détecter la présence potentielle de nouveaux gènes pouvant être exprimés chez les maïs transgéniques

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbott, W. S. - 1925. A method of computing the effectiveness of an insecticide. -J. Econ. Entomol., 18, 265–267.

    Article  CAS  Google Scholar 

  • Ali, A. &Young, S. Y. 1993.Bacillus thuringiensis vankurstaki activity against larvae ofHelicoverpa zea andHeliothis virescens (Lepidoptera: Noctuidae) on cotton. -J. Econ. Entomol., 86, 1064–1068.

    Article  Google Scholar 

  • Arpaia, S. &Ricchiuto, B. - 1993. Effects ofBacillus thuringiensis toxin extracts on feeding behavior and development of Colorado potato beetle (Coleoptera: Chrysomelidae) larvae. -Environ. Entomol., 22, 334–338.

    Article  Google Scholar 

  • Charpenter, J. L., Jackson, R. D. &McCormick, W. J. 1973. Sugarcane Borer: Control by delta-endotoxin ofBacillus thuringiensis, HD-1, in Field Tests. -J. Econ. Entomol., 66, 249–251.

    Article  Google Scholar 

  • De León, T, &Ibarra, J. E. - 1995. An Alternate bioassay technique to measure the activity of Cry III proteins ofBacillus thuringiensis. -J. Econ. Entomol., 88, 1596–1601.

    Article  Google Scholar 

  • Donovan, P. W., Dankocsik, C. C., Gilbert, M. P., Gawron-Burke, M. C., Groat, R. G., &Carton, B. C. - 1988. Amino acid sequence and entomocidal activity of the P2 crystal protein. -J. Biol. Chem., 263, 561–567.

    CAS  PubMed  Google Scholar 

  • Dulmage, T. H. - 1975. The Standardization of formulations of the delta-endotoxins produced byBacillus thuringiensis. -J. Invertebr. Pathol., 25, 279–281.

    Article  Google Scholar 

  • Feitelson, S. J., Payne, J. &Kim, L. - 1992.Bacillus thuringiensis: Insects and Beyond. -Biotechnology, 10, 271–275.

    Article  Google Scholar 

  • Gardner, W. A., Pendley, A. F. &Storey, G. K. - 1986. Interactions betweenBacillus thuringiensis and its beta-exotoxin in fall armyworm (Lepidoptera: Noctuidae) neonate larvae. -Fla. Entomol., 69, 531–536.

    Article  CAS  Google Scholar 

  • Gill, S. S., Cowles, E. A. &Pietrantonio, P. V. - 1992. The mode of action ofBacillus thuringiensis endotoxins. -Annu. Rev. Entomol., 37, 615–36.

    Article  CAS  PubMed  Google Scholar 

  • Hensley, S. D., McCormick, W. J., Long, W. H. &Concienne, E. J. - 1961. Field tests with new insecticides for control of the sugarcane borer in Louisiana in 1959. -J. Econ. Entomol., 54, 1153–1154.

    Article  Google Scholar 

  • Hernandez, J. L. - 1988. Evaluation de la toxicité deBacillus thuringiensis surSpodoptera frugiperda. -Entomophaga, 33, 163–171.

    Article  Google Scholar 

  • Hofte, H. &Whiteley H. R. - 1989. Insecticidal crystal proteins ofBacillus thuringiensis. -Microbiol. Rev., 53, 242–255.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Koziel, M. G., Beland, G. L., Bowman, C., Carozzi, N. B., Crenshaw, R., Crossland, L., Dawson, J., Desai, N., Hill, M., Kadwell, S., Launis,K., Lewis, K., Maddox, D., McPherson, K., Meghji, M., Merlin, E., Rhodes, R., Warren, G. W., Wright, M., &Evola, S. - 1993. Field performance of elite transgenic maize plants expressing an insecticidal protein derived fromBacillus thuringiensis. -Biotechnology, 11, 194–200.

    Article  CAS  Google Scholar 

  • Krieg, A. &Langenbruch, G. A. - 1981. Susceptibility of arthropod species toBacillus thuringiensis In: Microbial Control of Pests and Plant Diseases 1970-1980 (H. D. Burges, ed.) -Academic Press, New York, 837–896.

    Google Scholar 

  • Krieg, A., Schnetter, W, Huger, A. M. &Langenbruch, G. A. - 1987.Bacillus thuringiensis subsp.tenebrionis, strain BI 256-82: a third pathotype within the H-Serotype 8a8b. -System. Appl. Microbial., 9, 138–141.

    Article  Google Scholar 

  • Kumar, H. &Mihm, J. A, - 1995. Antibiosis and tolerance to fall armyworm,Spodoptera frugiperda (J. E. Smith), southwestern corn borer,Diatraea grandiosella Dyar and sugarcane borer,Diatraea saccharalis Fabricius in selected maize hybrids and varieties. -Maydica, 40, 245–251.

    Google Scholar 

  • Laemmli, U. K. &Favre, M. - 1973. Maturation of the head of bacteriophage T4. I. DNA packing agents. -J. Mol. Biol, 80, 575–599.

    Article  CAS  PubMed  Google Scholar 

  • Long, W. B., Hensley, D., Concienne, E. J. &McCormick, W. J. - 1961. Field tests with new insecticides for sugarcane borer control in Louisiana in 1960. -J. Econ. Entomol., 54, 1155–1156.

    Article  Google Scholar 

  • López-Meza, J. E., Federici, B. A., Poehner, W. J., Martinez-Castillo, A.M. &Ibarra, J. E. - 1995. Highly mosquitocidal isolates ofBacillus thuringiensis subspecieskenyae andentomocidus from Mexico. -Biochem. System. Ecol., 23, 461–468.

    Article  Google Scholar 

  • McGaughey, W. H. &Whalon, M. E. - 1992. Managing insect resistance toBacillus thuringiensis toxins. -Science, 258, 1451–1455.

    Article  CAS  PubMed  Google Scholar 

  • Meadows, M. P., Ellis, D. J., Butt, J. Jarret, P. &Burges, D. - 1992. Distribution, frequency, and diversity ofBacillus thuringiensis in an animal feed mill. -Appl. Environ. Microbiol. 58, 1344–1350.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meister, R. T. - 1986. Insecticide Product Guide, 1986. - Ag Consultant and Fieldman. Meister Publisliing Co. Willoughby, OH. 250 pp

    Google Scholar 

  • Metcalf, R. L. &Metcalf, R. A. - 1993. Destructive and Useful Insects. Their Habits and Control. 5th Ed. -McGraw-Hill, Inc. New York, 9. 11–9, 14, 9.31-9.33, 9.59-9.60.

    Google Scholar 

  • Mihm, J. - 1982. Techniques for efficient mass rearing and infestation in screening for host plant resistance to corn earwormHeliothis zea. - CIMMYT, Mexico.

    Google Scholar 

  • Mihm, J. - 1983a. Techniques for efficient mass rearing and infestation off all armyworm,Spodop- tera frugiperda J. W. Smith for host plant resistance studies. - CIMMYT, Mexico.

    Google Scholar 

  • Mihm, J. - 1983b. Techniques for efficient mass rearing and infestation in screening for host plant resistance toDiatraea sp. maize stem borers. - CIMMYT, Mexico.

    Google Scholar 

  • Moar, W. J. &Trumble, J. T. - 1990. Comparative toxicity of fiveBacillus thuringiensis strains and formulations againstSpodoptera exigua (Lepidoptera: Noctuidae). -Fla. Entomol., 73, 195–197.

    Article  Google Scholar 

  • Peferoen, M. - 1992. Engineering of insect-resistant plants withBacillus thuringiensis crystal protein genes. - Plant Genetic Manipulation for Crop Protection, 7, 135–153.

    CAS  Google Scholar 

  • Schesser, J. H., Kramer, K. J., &Bulla, Jr.,L. A. - 1977. Bioassay for homogenous parasporal crystal ofBacillus thuringiensis using the tobacco hornworm,Manduca sexta. -Appl. Environ. Microbiol., 33, 878–880.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sneath, P. H. A. - 1986. Endospore-forming Gram-Positive Rods and Cocci. In: J.H. Holt. Bergey’s Manual of Systematic Bacteriology, Vol. 2. -Williams & Wilkins., London. 1104–1207.

    Google Scholar 

  • Stone, B. T. &Sims, S. R. - 1993. Geographic susceptibility ofHeliothis virescens andHelicoverpa zea (Lepidoptera: Noctuidae) toBacillus thuringiensis. -J. Econ. Entomol., 86, 989–994.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bohorova, N., Maciel, A.M., Brito, R.M. et al. Selection and characterization of mexican strains ofBacillus thuringiensis active against four major lepidopteran maize pests. Entomophaga 41, 153–165 (1996). https://doi.org/10.1007/BF02764243

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02764243

Key-words

Navigation