Skip to main content
Log in

String theory, scale relativity and the generalized uncertainty principle

  • Published:
Foundations of Physics Letters

Abstract

Extensions (modifications) of the Heisenberg uncertainty principle are derived within the framework of the theory of special scale-relativity proposed by Nottale. In particular, generalizations of the stringy uncertainty principle are obtained where the size of the strings is bounded by the Planck scale and the size of the universe. Based on the fractal structures inherent with two dimensional quantum gravity, which has attracted considerable interest recently, we conjecture that the underlying fundamental principle behind string theory should be based on an extension of the scale relativity principle whereboth dynamics as well as scales are incorporated in the same footing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Pfeif, J. Frohlich,Rev. Mod. Phys. 67 (40) (1995) 759–779.

    Article  ADS  Google Scholar 

  2. S. Weinberg,Ann. Phys. 194 (1989) 336–386.

    Article  ADS  MathSciNet  Google Scholar 

  3. C. Castro,Found. Phys. Lett. 4 (1) (1991) 91.

    Article  MathSciNet  Google Scholar 

  4. A. Connes,Noncommutative Geomerty (Academic, New York, 1994).

    Google Scholar 

  5. D. Amati, M. Ciafaloni, and G. Veneziano,Phys. Lett. B 197 (1987) 91. D. Amati, M. Ciafaloni, and G. Veneziano,Phys. Lett. B 216 (1989) 41.

    ADS  Google Scholar 

  6. M. Fabrichesi and G. Veneziano,Phys. Lett. B 233 (1989) 135.

    Article  ADS  Google Scholar 

  7. D. Gross and P. F. Mende,Phys. Lett. B 197 (1987) 129.

    Article  ADS  MathSciNet  Google Scholar 

  8. K. Konishi, G. Paffuti, and P. Provero,Phys. Lett. B 234 (1990) 276.

    Article  ADS  MathSciNet  Google Scholar 

  9. R. Guida, K. Konish, and P. Provero,Mod. Phys. Lett. A 6 (16) (1991) 1487.

    Article  ADS  Google Scholar 

  10. J. J. Atick and E. WittenNucl. Phys. B 310 (1988) 291.

    Article  ADS  MathSciNet  Google Scholar 

  11. M. Duff, R. R. Khuri, and J. X. Lu,Phys. Rev. 259 (1995) 213–326.

    MathSciNet  Google Scholar 

  12. L. Susskind, “The world as a hologram,” hep-th/9409089.

  13. L. Nottale,Int. J. Mod. Phys. A 4 (1989) 5047;A 7 (20) (1992) 4899.

    Article  ADS  MathSciNet  Google Scholar 

  14. L. Nottale,Fractal Spacetime and Microphysics: Towards the Theory of Scale Relativity (World Scientific, Singapore, 1993).

    Google Scholar 

  15. G. ’t Hooft,Phys. Lett. B 198 (1987) 61.

    Article  ADS  MathSciNet  Google Scholar 

  16. J. Ambjorn, Y. Watabiki,Nucl. Phys. B 455 (1995) 129.

    ADS  MathSciNet  Google Scholar 

  17. J. Ambjorn, J. Jurkiewicz and Y. Watabiki, “On the fractal structure of two-dimensional quantum gravity,” hep-lat/9507014. NBI-ITE-95-22 preprint.

  18. S. Catterall, G. Thorleifsson, M. Bowick, and V. John, “Scaling and the fractal geometry of two-dimensional quantum gravity,” hep-lat/9504009.

  19. J. Ambjorn, J. Jukiewicz, “Scaling in four-dimensional quantum gravity,” hep-th/9503006.

  20. P. F. Mende, H. Ooguri,Nucl. Phys. B 339 (1990) 641.

    Article  ADS  MathSciNet  Google Scholar 

  21. C. Castro,Found. Phys. 22 (4) (1992) 569.

    Article  ADS  MathSciNet  Google Scholar 

  22. E. Santamato,Phys. Rev. D 29 (1984) 216.

    Article  ADS  MathSciNet  Google Scholar 

  23. J. P. Costella, “[p, q] ≠,’ Melbourne preprint, UM-P-95/51.

  24. J. Borde, F. Lizzi,Mod. Phys. Lett. A 5 (10) (1990) 1911.

    Google Scholar 

  25. M. Karliner, I. Klebanov, and L. Susskind,Int. J. Mod. Phys. A 3 (1988) 1981.

    Article  ADS  Google Scholar 

  26. V. S. Vladimorov, I. V. Volovich, and E. I. Zelenov,P-adic Analysis and Mathematical Physics (World Scientific, Singapore, 1992).

    Google Scholar 

  27. L. Garay,Int. J. Mod. Phys. A 10 (1995) 145. A. Ashtekar, C. Rovelli, and L. Smolin,Phys. Rev. Lett. 69 (2) (1992) 237.

    Article  ADS  Google Scholar 

  28. E. Witten,Phys. Today April 1996, p. 24.

  29. G. N. Ord,J. Phys. A. Math. Gen. 16 (1983) 1869.

    Article  ADS  MathSciNet  Google Scholar 

  30. N. Itzhaki, “Time measurement in quantum gravity,” hep-th/9404123.

  31. C. Castro, “Incorporating the scale-relativity principle in string theory and extended objects,” hep-th/9612003.

  32. T. Yoneya,Mod. Phys. Lett. A 4 (1989) 1587.

    Article  ADS  MathSciNet  Google Scholar 

  33. G. Amelino-Camelia, J. Ellis, N. E. Mavromatos, and D. V. Nanopoulos, “On space-time uncertainty relations of Liouville strings and D branes,” hep-th/9701144.

  34. A. Kempf, G. Mangano, “Minimal length uncertainty relation and ultraviolet regularization,” hep-th/9612084.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Castro, C. String theory, scale relativity and the generalized uncertainty principle. Found Phys Lett 10, 273–293 (1997). https://doi.org/10.1007/BF02764209

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02764209

Key words

Navigation