Deutsche Hydrografische Zeitschrift

, Volume 51, Issue 2–3, pp 313–329 | Cite as

Carbon cycling in the German Bight: An estimate of transformation processes and transport

  • A. Reimer
  • S. Brasse
  • R. Doerffer
  • C. -D. Dürselen
  • S. Kempe
  • W. Michaelis
  • H. -J. Rick
  • R. Seifert


Carbon cycling in the shallow, near-coastal environment of the German Bight, south-eastern North Sea was studied during different seasons (spring, summer, winter). Special emphasis was placed on the investigation of processes: biologically induced internal transformation within the water column as well as external influences (rivers, Wadden Sea). Detailed analysis of dissolved inorganic carbon, total alkalinity, particulate organic carbon, dissolved oxygen and calculated CO2 fluxes revealed carbon cycling in the German Bight to be highly variable between seasons, with either dominance of physical processes during winter or pronounced biological control during productive times in spring and summer. During winter, enhanced input of particulate carbon was gained from the Wadden Sea by ice transport while biological processes stayed low. In spring, high primary production decreased the inorganic carbon pool and pronounced CO2 fluxes from the atmosphere into the surface water amounted to 40 mmol m-2 d-1. About sixty per cent of the produced biomass was rapidly remineralised within the surface layer, while in the bottom waters remineralisation stayed low. Degassing of CO2 to the atmosphere could only be observed during times of enhanced river discharge. During summer, high regenerated production accounted for CO2 fluxes of up to 25 mmol m-2 d-1 into the surface water. Replenishment of DIC in the surface layer through vertical mixing was hindered by strong stratification. Ninety-five per cent of the primary produced biomass was remineralised. Our investigations clearly show the German Bight to be a net carbon sink in spring and summer. Apart from degassing of CO2 as a result of late autumn vertical mixing or short term events like enhanced freshwater input, CO2 concentrations close to equilibrium during winter suggest that the German Bight constitutes a net annual sink for atmospheric CO2.


German Bight River Plume Total Suspended Matter German Journal Particulate Organic Carbon Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Der Kohlenstoffkreislauf in der Deutschen Bucht: Eine AbschÄtzung von Transformationsprozessen und Transporten


Der Kohlenstoffkreislauf in der Deutschen Bucht wurde im Rahmen des KUSTOS Projektes in saisonaler Auflösung (Sommer, Frühjahr, Winter) wÄhrend der Jahre 1994-1996 untersucht. Die Quantifizierung des Kohlenstoffumsatzes zwischen marinem, fluviatilem, tidalem, atmosphÄrischem und sedimentÄrem Kompartiment in der Deutschen Bucht ermöglichte die Aufstellung einer Bilanz für Kohlenstoff im Küstenvorfeld.

Es konnte gezeigt werden, da\ der Kohlenstoffhaushalt in der Deutschen Bucht starken saisonalen Schwankungen unterliegt, aber auch durch kurzzeitige Ereignisse (z. B. erhöhter Abflu\ der einmündenden Flüsse oder Eisbedeckung) erheblich beeinflu\t wird. WÄhrend des Sommers dominieren biologische Prozesse (PrimÄrproduktion, Remineralisierung), die zu einem erhöhten Kohlenstoffumsatz innerhalb der WassersÄule führen. So werden bis zu 95% der produzierten Biomasse bereits in der WassersÄule wieder remineralisiert. WÄhrend des Winters konnten erhöhte Transporte von partikulÄrem Kohlenstoff aus den WattgewÄssern nachgewiesen werden. Generell überwiegen hier physikalische Prozesse. Im Frühjahr konnte detailliert die Entwicklung einer Planktonblüte verfolgt werden. WÄhrend der Zeit erhöhten Elbeabflusses im Frühjahr kommt es zu einer Entgasung von CO2 in die AtmosphÄre, generell stellt sich die Deutsche Bucht aber wÄhrend der von uns untersuchten ZeitrÄume als Senke für atmosphÄrisches CO2 dar (0.05* 109 mol d-1 im Winter bis 0.30 * 10-9 mol d-1 im Sommer).


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bakker, D. C. E., H. J. W. de Baar andH. P. J. de Wilde, 1996: Dissolved carbon dioxide in Dutch coastal waters.Mar. Chem.,55, 247–263.CrossRefGoogle Scholar
  2. Becker, G. A., H. Giese, K. Isert, P. König, H. Langenberg, Th. Pohlmann, andC. Schrum: Mesoscale structures, fluxes and the water mass variability of the German Bight as exemplified in the KUSTOS-experiments and numerical models. This volume, 155–180.Google Scholar
  3. Beusekom, J. E. E. van, U.H. Brockmann, K.-J. Hesse, W. Hickel, K. Poremba, andU. Tillmann, 1999: The importance of sediments in the transformation and turnover of nutrients and organic matter in the Wadden Sea and German Bight. This volume, 245–266.Google Scholar
  4. Bradshaw, A. L., P. G. Brewer, K. Shafer andR. T. Williams, 1981: Measurements of total carbon dioxide and alkalinity by potentiometric titration in the GEOSECS program.Earth Planet Sci. Lett,55, 99–115.CrossRefGoogle Scholar
  5. Brasse, S., A. Reimer, R. Seifert andW. Michaelis, 1999: The influence of intertidal mudflats on the dissolved inorganic carbon and total alkalinity distribution in the German Bight, southeastern North Sea.J. Sea Res.,42, 93–103.CrossRefGoogle Scholar
  6. Brockmann, U., T. Raabe, K. Hesse, K. Viehweger, S. Rick, A. Starke, B. Fabiszisky, D. Topcu, andR. Heller, 1999: Seasonal budgets of the nutrient elements N and P at the surface of the German Bight during winter 1996, spring 1995, and summer 1994. This volume, 267–292.Google Scholar
  7. Cadee, G. C., 1986: Organic carbon in the water column and its sedimentation, Fladen Ground (North Sea), May 1983.Neth. J. Sea Res.,20 (4), 347–358.CrossRefGoogle Scholar
  8. Dick, S., U.H. Brockmann, J.E.E, van Beusekom, B. Fabiszisky, M. George, U. Hentschke, K.-J. Hesse, B. Mayer, Th. Nitz, Th. Pohlmann, K. Poremba, K. Schaumann, W. Schönfeld, A. Starke, U. Tillmann, andG. Weide, 1999: Exchange of matter and energy between the Wadden Sea and the coastal waters of the German Bight-Estimations based on numerical simulations and field measurements. This volume, 181–220.Google Scholar
  9. DOE, 1994: Handbook of methods for the analysis of the various parameters of the carbon dioxide system in sea water. Version 2. A.G. Dickson and C. Goyet (Eds.), ORNL/CDIAC-74.Google Scholar
  10. Eisma, D., 1981: Supply and deposition of suspended matter in the North Sea.Spec. Publs. Int. Ass. Sediment,5, 415–428.Google Scholar
  11. Eisma, D., C. Cadee andR. Laane, 1982: Supply of suspended matter and particulate and dissolved organic carbon from the Rhine to the coastal North Sea. In: Transport of carbon and minerals in major world rivers. Part 1. ET. Degens (Ed.),Mitt. Geol.-PalÄont. Inst Univ. Hamburg,52, 483–505.Google Scholar
  12. Frankignoulle, M., I. Bourge andR. Wollast, 1996: Atmospheric CO2 fluxes in a highly polluted estuary (the Scheldt).Limnol. Oceanogr.,41 (2), 365–369.CrossRefGoogle Scholar
  13. Fricke, W. andM. Wallasch, 1994: Atmospheric CO2 records from sites in the UBA air sampling network. In: Trends ’93: A compendium of data on global change. T. A. Boden, D. P. Kaiser, R. J. Sepanski and F. W. Stoss (Eds.), ORNL/CDIAC-65, 135–146.Google Scholar
  14. Holligan, P. M. andW. A. Reiners, 1992: Predicting the responses of the coastal zone to global change.Adv. in Ecol. Res.,22, 211–255.CrossRefGoogle Scholar
  15. Hoppema, J. M. J., 1990: The distribution and seasonal variation of alkalinity in the Southern Bight of the North Sea and in the western Wadden Sea.Neth. J. Sea Res.,26, 11–23.CrossRefGoogle Scholar
  16. Hoppema, J. M. J., 1991: The seasonal behaviour of carbon dioxide and oxygen in the coastal North Sea along the Netherlands.Neth. J. Sea Res.,28 (3), 167–179.CrossRefGoogle Scholar
  17. Hoppema, J. M. J., 1993: Carbon dioxide and oxygen disequilibrium in a tidal basin (Dutch Wadden Sea).Neth. J. Sea Res.,31 (3), 221–229.CrossRefGoogle Scholar
  18. Johnson, K. M., A. E. King and J. McN. Sieburth, 1985: Coulometric TCO2 analysis for marine studies: an introduction.Mar. Chem.,16, 61–82.CrossRefGoogle Scholar
  19. Johnson, K. M. andJ. McN. Sieburth, 1987: Coulometric total carbon dioxide analysis for marine studies: automation and calibration.Mar. Chem.,21, 117–133.CrossRefGoogle Scholar
  20. Johnson K. M., K. D. Wills, D. B. Butler, W. K. Johnson andC. S. Wong, 1993: Coulometric total carbon dioxide analysis for marine studies: maximizing the performance of an automated gas extraction system and coulometric detector.Mar. Chem.,44, 167–187.CrossRefGoogle Scholar
  21. Joint, I. andA. Pomroy, 1993: Phytoplankton biomass and production in the southern North Sea.Mar. Ecol. Progr. Ser.,99, 169–182.CrossRefGoogle Scholar
  22. Kempe, S., 1982a: Long-Term Records of CO2 Pressure fluctuations in fresh water. In: Transport of carbon and minerals in major world rivers. Part 1. ET. Degens (Ed.), Mitt. Geol.-PalÄont.Inst Univ. Hamburg, 52, 91–332.Google Scholar
  23. Kempe, S., 1982b: VALDIVIA cruise, October 1981: Carbonate equilibria in the estuaries of Elbe, Weser, Ems and in the southern German Bight. In: Transport of carbon and minerals in major world rivers. Part 1. E.T. Degens (Ed.),Mitt. Geol.-PalÄont. Inst. Univ. Hamburg, 52,719-742.Google Scholar
  24. Kempe, S., G. Liebezeit, V. Dethlefsen andU. Harms, 1988: Biogeochemistry and Distribution of Suspended Matter in the North Sea and Implications to Fisheries Biology. Mitt. Geol.-PalÄont.Inst Univ. Hamburg,65, 552 pp.Google Scholar
  25. Kempe, S. andK. Pegler, 1991: Sinks and sources of CO2 in coastal seas: The North Sea.Tellus,43 B, 224–235.Google Scholar
  26. Kempe, S., 1995: Coastal seas: a net source or sink for atmospheric carbon dioxide? LOICZ/RandS/95-1, vi+27pp. LOICZ, Texel.Google Scholar
  27. Lewis, E. andD. W. R. Wallace, 1998: Program developed for CO2 system calculations. ORNL/ CDIAC-105, Oak Ridge National Laboratory, Carbon Dioxide Information Analysis Center, U.S. Department of Energy, Oak Ridge, Tennessee.Google Scholar
  28. Milliman, J. D. andR. H. Meade, 1983: World wide delivery of river sediment to the oceans.J. Geol.,100, 1–21.CrossRefGoogle Scholar
  29. Pegler, K. andS. Kempe, 1988: The carbonate system of the North Sea: Determination of alkalinity and TCO2 and calculation ofpCO2 and Sical (spring 1986). In: Biogeochemistry and distribution of suspended matter in the North Sea and implication to fisheries biology. S. Kempe, G. Liebezeit, V. Dethlefsen and U. Harms (Eds.),Mitt. Geol.-PalÄont Inst Univ. Hamburg, 65, 35–87.Google Scholar
  30. Pohlmann, T., 1996: Predicting the thermocline in a circulation model of the North Sea. Part I.: Model description and verification.Cont Shelf Res.,7, 131–146.CrossRefGoogle Scholar
  31. Pohlmann, Th., Th. Raabe, R. Doerffer, S. Beddig, U. Brockmann, S. Dick, M. Engel, K.-J. Hesse,P. König, B. Mayer, A. Moll, D. Murphy, W. Puls, H.-J. Rick, R. Schmidt-Nia, W. Schönfeld, andJ. Sündermann, 1999: Combined analysis of field and model data: A case study of the phosphate dynamics in the German Bight in summer 1994. This volume, 331–353.Google Scholar
  32. Postma, H. andJ. W. Rommets, 1984: Variations of particulate organic carbon in the central North Sea.Neth. J. Sea Res.,18, 31–50.CrossRefGoogle Scholar
  33. Reid, P. C., C. Lancelot, W. W. C. Giesekes, E. Hagmeier andG. Weichart, 1990: Phytoplankton of the North Sea and ist dynamics: a review.Neth. J. Sea Res.,26, 295–331.CrossRefGoogle Scholar
  34. Rick, H.-J., M. E. M. Baumann, J. Beil, S. Brasse, U. H. Brockmann, F. Buchholz, S. Diel-Christiansen, C.-D. Dürselen, U. Fehner, U. GÄrtner, M. George, A. GöBEL, K.-J. Hesse, C. Kabatnik, A. Klawon, R. Kopp, P. Koschinski, M. Krause, N. Ladwig, C. Mehrkühler, R. Müller, K. Poremba, T. Raabe, A. Reimer, T. RieLing, S. Rick, K. Schaumann, M. Schütt, J. Sündermann, A. Tillmann, U. Tillmann, A. Weber, G. Weide andC. Wolff, submitted to Dt. hydrogr. Z.: Balances and imbalances of production and respiration in German Bight pelagic systems.Google Scholar
  35. Roy, R. N., L. N. Roy, K. M. Vogel, C. Porter-Moore, T. Pearson, C. E. Good, F. J. Millero andD. M. Campbell, 1993: The dissociation constants of carbonic acid in seawater at salinities 5 to 45 and temperatures 0 to 45‡C.Mar. Chem.,44, 249–267.CrossRefGoogle Scholar
  36. Smith, S. V. andJ. T. Hollibaugh, 1993: Coastal metabolism and the oceanic organic carbon balance.Rev. Geophys.,31, 1, 75–89.CrossRefGoogle Scholar
  37. Sündermann, J., K.-J. Hesse, andS. Beddig, 1999: Coastal mass and energy fluxes in the southeastern North Sea. This volume, 113–132.Google Scholar
  38. Wanninkhof, R., 1992: Relationship between wind speed and gas exchange over the ocean.J. Geophys. Res.,97, C5, 7373–7382.Google Scholar
  39. Weichart, G., 1980: Chemical changes and primary production in the Fladen Ground area (North Sea) during the first phase of a spring phytoplankton bloom.Meteor Forsch.-Ergebn.,A 22, 79–86.Google Scholar
  40. Weiss, R.F., 1970: The solubility of nitrogen, oxygen and argon in water and seawater.Deep-Sea Res.,17, 721–735.Google Scholar

Copyright information

© Springer-Verlag 1999

Authors and Affiliations

  • A. Reimer
    • 1
  • S. Brasse
    • 2
  • R. Doerffer
    • 3
  • C. -D. Dürselen
    • 4
  • S. Kempe
    • 5
  • W. Michaelis
    • 6
  • H. -J. Rick
    • 7
  • R. Seifert
    • 8
  1. 1.Institut für Geologie und PalÄontologieGeorg August UniversitÄt GöttingenGöttingen
  2. 2.Institut für Biogeochemie und MeereschemieUniversitÄt HamburgHamburg
  3. 3.GKSS ForschungszentrumGeesthacht
  4. 4.Institut für Chemie und Biologie des MeeresUniversitÄt OldenburgOldenburg
  5. 5.Geologisch-PalÄontologisches InstitutTechnische Hochschule DarmstadtDarmstadt
  6. 6.ZMK Institut für Biogeochemie und MeereschemieUniversitÄt HamburgHamburg
  7. 7.Institut für MeereskundeUniversitÄt Kiel Abt. Marine BotanikKiel
  8. 8.Institut für Biogeochemie und MeereschemieUniversitÄt HamburgHamburg

Personalised recommendations