Advertisement

Deutsche Hydrografische Zeitschrift

, Volume 49, Issue 2–3, pp 431–444 | Cite as

Shallow water wave modelling with nonlinear dissipation

  • Christoph Schneggenburger
  • Heinz Günther
  • Wolfgang Rosenthal
New Modelling Techniques

Summary

In this paper a new shallow water wave model is described which uses nonlinear dissipation derived from turbulent diffusion as damping mechanism. The source functions of the model are presented in detail. Analytical results of the dynamical equation for simple cases illustrate basic features of the model. Academic test runs in deep and shallow water are performed. The designed cases are identical to the ones used in previous wave model intercomparison studies and thus allow comparison with other wave models. Results of a hindcast of a North Sea storm event illustrate the model behaviour in nonuniform real shallow water systems. In this case we can compare with field data and with the community wave model WAM cy. 4, which has been run parallel to our model. Our study shows that the concept of wave modelling with nonlinear dissipation is consistent with common knowledge of wave evolution in oceanic and shelf sea applications.

Keywords

Significant Wave Height Source Function German Journal Wind Input Nonlinear Dissipation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Seegangsmodellierung im Flachwasser mit nichtlinearer Dissipation

Zusammenfassung

Ein neues Seegangsmodell für Flachwasser wird beschrieben, welches nichtlineare Dissipation durch turbulente Diffusion als DÄmpfungsmechanismus verwendet. Die Quellfunktionen werden im Detail angegeben. Analytische Lösungen der dynamischen Gleichung in einfachen FÄllen illustrieren prinzipielle Eigenschaften des Modells. Akademische Tests für tiefes und flaches Wasser werden durchgeführt. Die Tests können mit entsprechenden Rechnungen aus früheren Modellvergleichsstudien verglichen werden. Die Nachrechnung eines Nordseesturmes zeigt das Verhalten des Modells in realen nichtuniformen Systemen. Ein Vergleich mit Felddaten und Ergebnissen des Community-Modells WAM cy. 4, welches parallel zum Einsatz gebracht wurde, kann durchgeführt werden. Unsere Studie zeigt, da\ das Konzept der Seegangsmodellierung mit nichtlinearer Dissipation zu Ergebnissen führt, die dem allgemeinen VerstÄndnis von Seegang in globalen und regionalen Anwendungen entsprechen.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Battjes, J. A. and J. P. F. M. Janssen, 1978: Energy loss and set-up due to breaking of random waves. In: Proc. 16th Int. Conf. Coastal Engineering, pages 569-587, Hamburg, 1978.Google Scholar
  2. Bender, L. C., 1996: Modification of the physics and numerics in a third-generation ocean wave model.J. Atmos. Oceanic Technol.,13, 726–750.CrossRefGoogle Scholar
  3. Bouws, E., H. Günther, andW. Rosenthal, 1985: Similarity of the wind wave spectrum in finite depth water. 1. Spectral form.J. Geophys. Res.,90, 975–986.Google Scholar
  4. Burgers, G. andV. K. Makin, 1992: Boundary layer model results for wind-sea growth.J. Phys. Oceanogr.,23, 372–385.CrossRefGoogle Scholar
  5. Cavaleri, L.. andP. Manalotte Rizzoli, 1981: Wind wave prediction in shallow water — theory and application.J. Geophys. Res.,86, 10961.Google Scholar
  6. Eldeberky, Y. and J. A. Battjes, 1995: Parameterisation of triad interactions in wave energy models. In: Proc. Int. Conf. Coastal Dynamics, pages 569–587, Gdansk, Poland.Google Scholar
  7. Eldeberky, Y.. andJ. A. Battjes, 1996: Spectral modelling of wave breaking: Application to boussinesq equations.J. Geophys. Res.,101, 1253–1264.CrossRefGoogle Scholar
  8. Günther, H., S. Hasselmann, and P. A. E. M. Janssen, 1992: The WAM Model cycle 4.0. User manual. Deutsches Klimarechenzentrum Hamburg, technical report no. 4.Google Scholar
  9. Günther, H. and W. Rosenthal, 1995: A wave model with a non-linear dissipation source function. In: Proc. 4th Int. Workshop Wave Hindcasting and Forecasting, Banff, Canada.Google Scholar
  10. Hasselmann, K.., 1974: On the spectral dissipation of ocean waves due to white capping.Boundary-Layer Meteorol.,6, 107–127.CrossRefGoogle Scholar
  11. Hasselmann, K., T. P. Barnett, E. Bouws, H. Carlson, D. E. Cartwright, K. Enke, J. A. Ewing, H. Gienapp, D. E. Hasselmann, P. Krusemann, A. Meerburg, P. Mueller, D. J. Olbers, K. Richter, W. Sell, and H. Walden, 1973: Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP).Dt. Hydrogr. Z. Erg.-H.,A8 (12), 95p.Google Scholar
  12. Holthuijsen, L. H., N. Booij, and R. C. Ris, 1993: A spectral model for the tidal zone. In: Proc. Int. Conf. WAVES.Google Scholar
  13. Holthuijsen, L. H., N. Booij, and R. C. Ris, 1996: User manual of the program SWAN cycle 1, simulation of waves in the near-shore. Faculty of Civil Engineering, Delft University of Technology, the Netherlands.Google Scholar
  14. Kahma, K. K.. andC. J. Calkoen, 1992: Reconciling discrepancies in the observed growth of wind-generated waves.J. Phys. Oceanogr.,22, 1389–1405.CrossRefGoogle Scholar
  15. Komen, G. J., L. Cavaleri, M. Donelan, K. Hasselmann, S. Hasselmann, and P. A. E. M. Janssen, 1994: Dynamics and Modelling of Ocean Waves. Cambridge University Press.Google Scholar
  16. Lin, R. Q.. andN. E. Huang, 1996: The Goddard Coastal Wave Model. Part I: Numerical method.J. Phys. Oceanogr.,26, 833–847.CrossRefGoogle Scholar
  17. Miles, J. W., 1957: On the generation of surface waves by shear flows.J. Geophys. Res.,99, 18501–18511.Google Scholar
  18. Phillips, O. M., 1957: On the generation of waves by turbulent wind.J. Fluid Mech.,2, 417–445.CrossRefGoogle Scholar
  19. Phillips, O..M. Phillips, 1985: Spectral and statistical properties of the equilibrium range in wind-generated gravity waves.J. Fluid Mech.,156, 505–531.CrossRefGoogle Scholar
  20. Pierson, W. J.., Jr. andL. Moskowitz, 1964: A proposed spectral form for fully developed wind seas based on the similarity theory of S. A. Kitaigorodskii.J. Geophys. Res.,69, 5181–5190.CrossRefGoogle Scholar
  21. Plant, W. J., 1986: A two-scale model of short wind-generated waves and scatterometry.J. Geophys. Res.,91, 10735–10749.Google Scholar
  22. Rosenthal, W., 1989: Derivation of Phillips α-parameter from turbulent diffusion as a damping mechanism. In: G. J. Komen and W. A. Oost, editors, Radar Scattering from Modulated Wind Waves, pages 81-88. Kluwer Academic Publishers.Google Scholar
  23. Shemdin, O., K. Hasselmann, S. V. Hsiao, and K. Herterich, 1978: Nonlinear and linear bottom interaction effects in shallow water. In: A. Favre and K. Hasselmann, editors, Proc. NATO Symp. on Turbulent Fluxes through the Sea Surface, Wave Dynamics, and Prediction, Ile de Bendor, France, Plenum Press.Google Scholar
  24. Snyder, R. L..,F. W. Dobson, J. A. Elliott, andR. B. Long, 1981: Array measurements of atmospheric pressure fluctuations above surface gravity waves.J. Fluid Mech.,102, 1–59.CrossRefGoogle Scholar
  25. Snyder, R. L..,L. M. Lawson, andR. B. Long, 1992: Inverse modelling of the action-balance equation. Part I: Source expansion and adjoint model equations.J. Phys. Oceanogr.,22, 1540–1555.CrossRefGoogle Scholar
  26. SWAMP, 1985: The SWAMP group: J. H. Allender, T. P. Barnett, L. Bertotti, J. Bruinsma, V. J. Cardone, L. Cavaleri, J. Ephraums, B. Golding, A. Greenwood, J. Guddal, H. Guenther, K. Hasselmann, S. Hasselmann, P. Joseph, S. Kawai, G. J. Komen, L. Lawson, Linné, R. B. Long, M. Lybanon, E. Maeland, W. Rosenthal, Y. Toba, T. Uji, and W. J. P. de Voogt. Ocean Wave Modelling. Plenum Press.Google Scholar
  27. SWIM, 1985: The SWIM group:E. Bouws, J. J. Ephraums, J. A. Ewing, P. E. Francis, H. Guenther, P. A. E. M. Janssen, G. J. Komen, W. Rosenthal, andW. J. P. de Voogt. A shallow water intercomparison of three numerical wave prediction models (SWIM). Quart.J. R. Met. Soc.,111, 1087–1112.CrossRefGoogle Scholar
  28. WAMDI, 1988: The WAMDI group:S. Hasselmann, K. Hasselmann, E. Bauer, P. A. E. M. Janssen, G. J. Komen, L. Bertotti, P. Lionello, A. Guillaume, V. C. Car-done, J. A. Greenwood, M. Reistad, L. Zambresky, andJ. A. Ewing. The WAM model — a third generation ocean wave prediction model.J. Phys. Oceanogr.,18, 1775–1810.CrossRefGoogle Scholar
  29. Toba, Y., 1973: Local balance in the air-sea boundary process, 3. On the spectrum of wind waves.Oceanogr. Soc.,29, 209–220.CrossRefGoogle Scholar
  30. Tolman, H. L., 1992: Effects of numerics on the physics in a third-generation wind-wave model.J. Phys. Oceanogr.,22, 1095–1111.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1997

Authors and Affiliations

  • Christoph Schneggenburger
    • 1
  • Heinz Günther
    • 2
  • Wolfgang Rosenthal
    • 3
  1. 1.Christoph Schneggenburger GKSS-Forschungszentrum Geesthacht GmbHMax-Planck-Stra\eGeesthacht
  2. 2.GKSS ForschungszentrumMax-Planck-Stra\eGeesthacht
  3. 3.GKSS ForschungszentrumGeesthacht

Personalised recommendations