Advertisement

Israel Journal of Mathematics

, Volume 107, Issue 1, pp 125–139 | Cite as

Localization for random perturbations of anisotropic periodic media

  • Peter Stollmann
Article

Abstract

We prove localization for random perturbations of periodic divergence form operators of the form ∇ · aω · ∇ near the band edges. Here aω is a matrix function which results from an Anderson type perturbation of a periodic matrix function.

Keywords

Band Edge Random Perturbation Pure Point Spectrum Generalize Eigenfunctions Schr6dinger Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. M. Barbaroux, J. M. Combes and P. D. Hislop,Localization near band edges for random Schrödinger operators, Helvetica Physica Acta70 (1997), 16–43.MATHMathSciNetGoogle Scholar
  2. [2]
    R. Carmona and J. Lacroix,Spectral Theory of Random Schrödinger Operators, Birkhäuser, Boston, Basel, Berlin, 1990.MATHGoogle Scholar
  3. [3]
    J. M. Combes and L. Thomas,Asymptotic behavior of eigenfunctions of multiparticle Schrödinger operators, Communications in Mathematical Physics34 (1973), 439–482.CrossRefMathSciNetGoogle Scholar
  4. [4]
    A. Figotin and A. Klein,Localization of classical waves I: Acoustic waves, Communications in Mathematical Physics180 (1996), 439–482.MATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    R. Hempel,Second order perturbations of divergence type operators with a spectral gap, inSymposium on Operator Calculus and Spectral Theory, Lambrecht 1991 (M. Demuth, B. Gramsch and B.-W. Schulze, eds.), Operator Theory Advances and Applications vol. 57, Birkhäuser, Basel, Boston, Berlin, 1992.Google Scholar
  6. [6]
    R. Hempel and I. Herbst,Bands and gaps for periodic magnetic Hamiltonians, inPartial Differential Operators and Mathematical Physics, International Conference in Holzhau, 1994 (M. Demuth and B.-W. Schulze, eds.), Operator Theory Advances and Applications Vol. 78, Birkhäuser, Basel, Boston, Berlin, 1995.Google Scholar
  7. [7]
    T. Kato,Perturbation Theory for Linear Operators, 2nd ed., Springer-Verlag, Berlin, 1976.MATHGoogle Scholar
  8. [8]
    W. Kirsch,Wegner estimates and Anderson localization for alloy-type potentials, Mathematische Zeitschrift221 (1996), 507–512.MATHMathSciNetGoogle Scholar
  9. [9]
    W. Kirsch, P. Stollmann and G. Stolz,Localization for random perturbations of periodic Schrödinger Operators, preprint.Google Scholar
  10. [10]
    L. Pastur and A. Figotin,Random Schrödinger operators, Springer-Verlag, Berlin, 1992.Google Scholar
  11. [11]
    M. Reed and B. Simon,Methods of Modern Mathematical Physics IV, Academic Press, New York, 1978.MATHGoogle Scholar
  12. [12]
    G. V. Rozenblum, M. A. Shubin and M. Z. Solomyak,Spectral theory of differential operators, inPartial Differential Equations (M. A. Shubin, ed.), Encyclopedia of Mathematical Sciences Vol. 64, Springer-Verlag, Berlin, Heidelberg, 1994.Google Scholar
  13. [13]
    P. Stollmann,A short proof of a Wegner estimate and localization, preprint.Google Scholar
  14. [14]
    W. Thirring,A Course in Mathematical Physics 3, Quantum Mechanics of Atoms and Molecules Springer-Verlag, New York, Wien, 1981.MATHGoogle Scholar
  15. [15]
    J. Weidmann,Linear Operators in Hilbert Spaces, Graduate Texts in Mathematics Vol. 68, Springer-Verlag, Berlin, 1980.MATHGoogle Scholar

Copyright information

© The Magnes Press 1998

Authors and Affiliations

  1. 1.Fachbereich MathematikJohann Wolfgang Goethe-UniversitätFrankfurt and MainGermany

Personalised recommendations