Israel Journal of Mathematics

, Volume 107, Issue 1, pp 1–16 | Cite as

On groups that are residually of finite rank

  • Martyn R. Dixon
  • Martin J. Evans
  • Howard Smith


Letr be a fixed positive integer. A groupG has (Prüfer) rankr if every finitely generated subgroup ofG can be generated byr elements andr is the least such integer. In this paper we consider groups that are residually of rankr. Among other things we prove that a periodic group that is residually (of rankr and locally finite) is locally finite and obtain the structure of groups that are residually (of rankr and locally soluble). A number of examples are also given to illustrate the limitations of these theorems.


Normal Subgroup Finite Group Nilpotent Group Finite Index Finite Rank 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    B. Amberg and Y. P. Sysak,Locally soluble products of two minimax subgroups, inGroups-Korea '94 (A. C. Kim and D. Johnson, eds.), de Gruyter, Berlin, 1995, pp. 9–14.Google Scholar
  2. [2]
    N. S. Černikov,A theorem on groups of finite special rank, Ukrainskiî Matematicheskiî Zhurnal42 (1990), 962–970; English transl.: Ukrainian Mathematical Journal42 (1990), 855–861.Google Scholar
  3. [3]
    J. D. Dixon, M. F. P. du Sautoy, A. Mann and D. Segal,Analytic Pro-p Groups, London Mathematical, Society Lecture Note Series, Volume 157, Cambridge University Press, 1991.Google Scholar
  4. [4]
    M. R. Dixon, M. J. Evans and H. Smith,Locally (soluble-by-finite) groups of finite rank, Journal of Algebra182 (1996), 756–769.MATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    R. I. Grigorčuk,On the Burnside problem for periodic groups, Funkcionalnyi Analiz i ego Priloženiya14 (1980), 53–54; English transl.: Functional Analysis and its Applications14 (1980), 41–43.Google Scholar
  6. [6]
    K. W. Gruenberg,Residual properties of infinite soluble groups, Proceedings of the London Mathematical Society (3)7 (1957), 29–62.MATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    M. I. Kargapolov,Some problems in the theory of soluble and nilpotent groups, Doklady Adakemii Nauk SSSR127 (1959), 1164–1166 (Russian).MATHMathSciNetGoogle Scholar
  8. [8]
    P. H. Kropholler,On finitely generated soluble groups with no large wreath product sections, Proceedings of the London Mathematical Society (3)49 (1984), 155–169.MATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    C. R. Leedham-Green and W. Plesken,Some remarks on Sylow subgroups of general linear groups, Mathematische Zeitschrift191 (1986), 529–535.MATHCrossRefMathSciNetGoogle Scholar
  10. [10]
    D. J. S. Robinson,Finiteness Conditions and Generalized Soluble Groups, Vols. 1 and 2. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 62 and 63, Springer-Verlag, Berlin, Heidelberg, New York, 1972.Google Scholar
  11. [11]
    D. J. S. Robinson,A Course in the Theory of Groups, Graduate Texts in Mathematics, Vol. 80, Springer-Verlag, Berlin, Heidelberg, New York, 1996.Google Scholar
  12. [12]
    D. Segal,A footnote on residually finite groups, Israel Journal of Mathematics94, (1996), 1–5.MATHCrossRefMathSciNetGoogle Scholar
  13. [13]
    V. P. Šunkov,On locally finite groups of finite rank, Algebra i Logika10 (1971), 199–225; English transl: Algebra and Logic10 (1971) 127–142.MathSciNetGoogle Scholar
  14. [14]
    B. A. F. Wehrfritz,Infinite Linear Groups, Ergebnisse der Mathematik und ihrer Grenzgebiete Band 76, Springer-Verlag, New York, Heidelberg, Berlin, 1973.MATHGoogle Scholar
  15. [15]
    J. S. Wilson,Two generator conditions for residually finite groups, The Bulletin of the London Mathematical Society23 (1991), 239–248.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© The Magnes Press 1998

Authors and Affiliations

  • Martyn R. Dixon
    • 1
  • Martin J. Evans
    • 1
  • Howard Smith
    • 2
  1. 1.Department of MathematicsUniversity of AlabamaTuscaloosaUSA
  2. 2.Department of MathematicsBucknell UniversityLewisburgUSA

Personalised recommendations