Advertisement

Lasers in Medical Science

, Volume 12, Issue 2, pp 157–163 | Cite as

Analysis of fibre tip damage risk during pulsed holmium laser application under water

  • T. Asshauer
  • G. Delacrétaz
Original Articles

Abstract

Breaking of optical fibre tips during medical holmium laser applications involving endoscopic irradiation in a liquid environment, such as arthroscopy, has been reported. This represents a risk of complications due to foreign body reactions induced by quartz fragments remaining at the operation site.

Fibre breakage has been analysed under controlled conditions at clinically used laser energies of 20–1000 mJ. The generation of pressure transients at the collapse of laser-induced vapour bubbles is identified as the mechanism of fibre tip destruction. Fibre damage is observed only in a confining liquid envivronment. The highest fibre damage occurrence is observed for laser fluences of 70–250 J cm-25 at the bare fibre tip, at pulse durations of 200–350 Μs. The fibre damage occurrence and extent increase with the fibre diameter.

Avoiding the identified dangerous fluence range or use of fibres smaller than 400Μm diameter is recommended to perform endoscopic holmium laser application with minimal fibre damage risk.

Key words

Holmium laser Ablation Arthroscopy Cavitation Vapour bubbles Pressure transients 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Möller KO, Lind BM, Karcher K, Hohlbach G. Holmium Laser versus mechanische Knorpelabtra-gung. Vergleichende Untersuchung am Arthrosemodell bei Kaninchen.Langenbecks Arch Chir 1994,379:84–94PubMedCrossRefGoogle Scholar
  2. 2.
    Dorn U.Laserarthroskopie am Kniegelenk des Deut- schen Landschweins. MD Thesis (Dr. der VeterinÄ- medizin). Freie UniversitÄt Berlin, 1994 (unpubl.)Google Scholar
  3. 3.
    Rink K, Delacrétaz G, Salathé RP. Fragmentation process of current laser lithotriptors.Lasers Surg Med 1995,16:134–46PubMedCrossRefGoogle Scholar
  4. 4.
    Thomas S, Pensel J, Engelhardt R, Meyer W, Hofstetter A. The pulsed dye laser versus Q-switched Nd:YAG laser in laser induced shockwave lithotripsy.Lasers Surg Med 1988,8: 363–70PubMedCrossRefGoogle Scholar
  5. 5.
    Bruhn EW, Go P, McClane RW, Hunter JG, Straight RC. Biological consequences of fiber fragmentation with pulsed laser lithotripsy. In:Laser Surgery: Advanced Characterization, Therapeutics, and Systems II. Los Angeles, 1990.Proc. SPIE 1200:90–3Google Scholar
  6. 6.
    Brinkmann R, Meyer W, Engelhardt R, Walling JC. Laser induced shockwave lithotripsy by use of an 1 Μs Alexandrite laser. In:Laser Surgery: Advanced Characterization, Therapeutics, and Systems II. Los Angeles, 1990.Proc. SPIE 1200:67–74Google Scholar
  7. 7.
    Strunge C, Brinkmann R, Flemming G, Engelhardt R. Interspersion of fragmented fiber’s splinters into tissue during pulsed alexandrite laser lithotripsy.Lasers Surg Med 1991,11:183–7PubMedCrossRefGoogle Scholar
  8. 8.
    Rink K, Delacrétaz G, Salathé RP. Fragmentation process induced by nanosecond laser pulses.Appl Phys Lett 1992,61:2644–6CrossRefGoogle Scholar
  9. 9.
    Rink K, Delacrétaz G, Salathe RP. Fragmentation process induced by microsecond laser pulses during lithotripsy.Appl Phys Lett 1992,61:258–60CrossRefGoogle Scholar
  10. 10.
    van Leeuwen TG, van der Veen MJ, Verdaasdonk RM, Borst C. Noncontact tissue ablation by holmium:YSGG laser pulses in blood.Lasers Surg Med 1991,11:26–34PubMedCrossRefGoogle Scholar
  11. 11.
    Asshauer T, Rink K, Delacrétaz GP et al. Acoustic transient generation in pulsed holmium laser ablation underwater. In:Laser-Tissue Interaction V. Los Angeles, 1994.Proc. SPIE 213A:423–33Google Scholar
  12. 12.
    Asshauer T, Rink K, Delacrétaz G. Acoustic transient generation by holmium laser induced cavitation bubbles.J Appl Phys 1994,76:5007–13CrossRefGoogle Scholar
  13. 13.
    Blake JR, Taib BB, Doherty G. Transient cavities near boundaries. Part 2. Free surface.J Fluid Mech 1987,181:197–212CrossRefGoogle Scholar
  14. 14.
    Plesset MS. Shock waves from cavity collapse.Philos Trans Roy Soc London A1966,260: 241–4CrossRefGoogle Scholar
  15. 15.
    Tschepe J, Gundlach P, Hopf J, Leege N, Müller G, Scherer H. Faserabbrand beim Alexandrit-Laser: ein Problem der laserinduzierten Stosswellen Lithotripsie.Lasermedizin 1991,7: 162–6Google Scholar
  16. 16.
    Brennen CE.Cavitation and Bubble Dynamics. Oxford: Oxford University Press, 1995 (Oxford Engineering Series 44)Google Scholar
  17. 17.
    Asshauer T, Jansen ED, Frenz M, Delacrétaz G, Welch AJ. Acoustic transients in pulsed holmium laser abla- tion: Effects of pulse duration. In:Laser Interaction with Hard and Soft Tissue II. Lille, 1994.Proc. SPIE 2323:117–29Google Scholar
  18. 18.
    Jansen ED, Asshauer T, Frenz M, Motamedi M, Delacrétaz G, Welch AJ. Effect of pulse duration on bubble formation and laser-induced pressure waves during holmium laser ablation.Lasers Surg Med 1996,18:278–93.PubMedCrossRefGoogle Scholar

Copyright information

© W.B. Saunders Company Ltd. 1997

Authors and Affiliations

  • T. Asshauer
    • 1
  • G. Delacrétaz
    • 1
  1. 1.Institut d’Optique Appliquée (IOA)école Polytechnique Fédérale de LausanneLausanneSwitzerland

Personalised recommendations