Journal of Structural Chemistry

, Volume 38, Issue 5, pp 742–747 | Cite as

Effect of powder dispersion on the1 A 15 T 2 spin transition in Fe(II) complexes with 4-amino-l,2,4-triazole

  • V. A Varnek
  • L. G. Lavrenova


A series of Fe(II) complexes with 4-amino-1,2,4-triazole ground in an agate mortar for 10 min is studied by Mössbauer spectroscopy. Strong effects of powder dispersion both on the1 A 15 T 2 spin transition and on the structure dynamic characteristics of the complexes are found. Thus at 295 K the high-spin form of Fe(II) appears in the samples or its fraction increases; the ionicity of Fe-N bonds and the extent of distortion of the octahedral environment of iron atoms for the low-spin phases of the complexes also increase. It is established that powder dispersion markedly affects the probability of the Mössbauer effect and the vibrational spectrum of the lattice of coordination compounds. For both the low- and high-spin phases of the complexes, it is reported that the vibrational spectrum is “softened.” The main reason for these effects is supposed to be defectiveness rather than the size of the particles due to mechanical activation of the powder.


Triazole Vibrational Spectrum Iron Atom Spin Transition Powder Dispersion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. G. Lavrenova, V. N. Ikorskii, V. A. Varnek, et al.,Zh. Strukt. Khim.,34, No. 6, 145–151 (1993).Google Scholar
  2. 2.
    V. A. Varnek and L. G. Lavrenova,ibid.,35, No. 6, 103–112 (1994).Google Scholar
  3. 3.
    V. A. Varnek, L. G. Lavrenova, and S. A. Gromilov,ibid.,38, No. 4, 704–712 (1997).Google Scholar
  4. 4.
    V. A. Varnek and L. G. Lavrenova,ibid.,38, No. 5, 1011–1014 (1997).Google Scholar
  5. 5.
    E. König, G. Ritter, W. Irler, and H. A. Goodwin,J. Am. Chem. Soc.,102, 4681–4687 (1980).CrossRefGoogle Scholar
  6. 6.
    E. W. Müller, H. Spiering, and P. Gutlih,Chem. Phys. Lett.,93, No. 6, 567–571 (1982).CrossRefGoogle Scholar
  7. 7.
    E. W. Müller, H. Spiering, and P. Gutlih,J. Chem. Phys.,79, No. 3, 1439–1443 (1983).CrossRefGoogle Scholar
  8. 8.
    E. König, G. Ritter, S. K. Kulshreshtha, and N. Csatary,Inorg. Chem.,23, 1903–1910 (1985).CrossRefGoogle Scholar
  9. 9.
    E. Konig, G. Ritter, and S. K. Kulshreshtha,Chem. Rev.,85, 219–234 (1985).CrossRefGoogle Scholar
  10. 10.
    V. V. Zelentsov, M. N. Gabdrakhmanov, and S. S. Sobolev,Khim. Fiz.,5, No. 9, 1216–1223 (1986).Google Scholar
  11. 11.
    L. G. Lavrenova, V. N. Ikorskii, V. A. Varnek, et al.,Koordinats. Khim.,12, No. 2, 207–215 (1986).Google Scholar
  12. 12.
    L. G. Lavrenova, V. N. Ikorskii, V. A. Varnek, et al.,ibid.,16, No. 5, 654–661 (1990).Google Scholar
  13. 13.
    L. G. Lavrenova, N. G. Yudina, V. N. Ikorski, et al.,Polyhedron,14, No. 10, 1333–1337 (1995).CrossRefGoogle Scholar
  14. 14.
    E. G. Awakumov,Mechanical Methods of Activation of Chemical Processes [in Russian], Nauka, Novosibirsk (1979).Google Scholar
  15. 15.
    O. Kahn, J. Krober, and C. JayAdv. Mater.,4, No. 11, 718–728 (1992).CrossRefGoogle Scholar
  16. 16.
    V. A. Varnek, E. G. Awakumov, L. N. Mazalov, and Lee Bon Gwon,Izv. Sib. Otd. Akad Nauk SSSR, Ser. Khim. Nauk, No. 3, 88–93 (1977).Google Scholar
  17. 17.
    E. G. Awakumov, V. A. Varnek, and L. N. Mazalov,ibid., No. 1, 119–123 (1980).Google Scholar
  18. 18.
    V. A. Varnek and L. G. Lavrenova,Zh. Strukt. Khim.,36, No. 1, 120–127 (1995).Google Scholar

Copyright information

© Plenum Publishing Corporation 1998

Authors and Affiliations

  • V. A Varnek
    • 1
  • L. G. Lavrenova
    • 1
  1. 1.Institute of Inorganic Chemistry, Siberian BranchRussian Academy of SciencesUSSR

Personalised recommendations