The biodegradation of lactic acid-based poly(ester-urethanes)

  • Kari Hiltunen
  • Jukka V. SeppÄlÄ
  • Merja ItÄvaara
  • Mika HÄrkönen


The biodegradability of lactic acid based poly(ester-urethanes) was studied using the headspace test method, which was performed at several elevated temperatures. The poly(ester-urethanes) were prepared using a straight two-step lactic acid polymerization process. The lactic acid is first condensation polymerized to a low molecular weight hydroxyl-terminated telechelic prepolymer and then the molecular weight is increased with a chain extender such as diisocyanate. In the biodegradation studies the effect of different stereostructures (different amounts of D-units in the polymer chain), the length of ester units, and the effect of crosslinking on the biodegradation rate were studied. The results indicate that poly(ester-urethanes) do not biodegrade at 25‡C, but at elevated temperatures they biodegrade well. The different stereostructures and crosslinking have a strong influence on the biodegradation rate. The length of ester units in the polymer chain also affects the biodegradation rate, but much less than crosslinking and stereostructure.

Key words

Biodegradation poly(ester-urethanes) headspace test method lactic acid 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. A. Pathirana and K. J. Seal (1985)Int. Biodeter. 21, 41–49.Google Scholar
  2. 2.
    M. J. Kay, R. W. McCabe, and L. H. G. Morton (1993)Int. Biodeter. 31, 209–225.CrossRefGoogle Scholar
  3. 3.
    S. J. Huang, C. Marcri, M. Roby, C. Benedict, and J. A. Cameron (1981)Am. Chem. Soc. Symp. Ser. 172, 471–487.Google Scholar
  4. 4.
    M. J. Kay, L. H. G. Morton, and E. L. Prince (1991)Int. Biodeter. 27, 205–222.CrossRefGoogle Scholar
  5. 5.
    S. Owen, M. Masaoka, R. Kawamura, and N. Sakota (1995)J.M.S. Pure Appl. Chem. A32(4), 843–850.Google Scholar
  6. 6.
    I. Grizzi, H. Garreau, S. Li, and M. Vert (1995)Biomaterials 16, 305–311.CrossRefGoogle Scholar
  7. 7.
    S. Gogolewski and A. J. Pennings (1983)Colloid Sci. 261, 477–484.CrossRefGoogle Scholar
  8. 8.
    J. E. Bergsma, F. R. Rozema, R. R. M. Bos, G. Boering, W. C. de Bruijn, and A. J. Pennings (1995)Biomaterials 16, 264–274.Google Scholar
  9. 9.
    S. Li, M. Garreau, and M. Vert (1990)J. Mater. Sci. Mater. Med. 1, 198–206.CrossRefGoogle Scholar
  10. 10.
    J. SeppÄlÄ, J.-F. Selin, and S. Tao, FI. Pat 92592, App. 16.10.1992, Acc. 12.12.1994.Google Scholar
  11. 11.
    K. Hiltunen, M. HÄrkönen, T. VÄÄnÄnen, and J. V. SeppÄlÄ (1996)Macromolecules 29, 8677–8682.CrossRefGoogle Scholar
  12. 12.
    K. Hiltunen, M. HÄrkönen, T. VÄÄnÄnen, and J. V. SeppÄlÄ (1995) Poster at PAT95, Pisa, June.Google Scholar
  13. 13.
    K. Hiltunen, J. V. SeppÄlÄ, and M. HÄrkönen (1997)J. Appl. Polym. Sci. 63, 1091–1100.CrossRefGoogle Scholar
  14. 14.
    M. HÄrkönen, K. Hiltunen, M. Malin, and J. V. SeppÄlÄ (1995)J.M.S. Pure Appl. Chem. A32(4), 857–862.CrossRefGoogle Scholar
  15. 15.
    M. ItÄvaara and M. Vikman (1995)Chemosphere 31, 4359–4373.CrossRefGoogle Scholar
  16. 16.
    M. Vikman, M. ItÄvaara, and K. Poutanen (1995)J. Environ. Polym. Degrad. 3, 23–29.CrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • Kari Hiltunen
    • 1
  • Jukka V. SeppÄlÄ
    • 1
  • Merja ItÄvaara
    • 2
  • Mika HÄrkönen
    • 1
  1. 1.Department of Chemical Engineering,Laboratory of Polymer TechnologyHelsinki University of TechnologyEspooFinland
  2. 2.Technical Research Centre of Finland, Biotechnology and Food ResearchFinland

Personalised recommendations