Journal of Structural Chemistry

, Volume 38, Issue 3, pp 358–365 | Cite as

Empirical model of orbital relaxation and interatomic distances in molecules with polar chemical bonds

  • A. I. Ermakov
  • V. S Ponomarev
  • N. A. Makrushin
  • V. A. Kochetov


Orbital relaxation is treated as one of the reasons for shortening of chemical bonds with respect to the sum of the covalent radii of interacting atoms. The C-O, Si-O, Si-C, Si-H, Si-F, and Si-Cl bond lengths in organic and inorganic silicon compounds and of E-H and E-F bonds in diatomic hydrides and absolute-valent fluorides (E is a second-period element) are considered in terms of a simple empirical model of orbital relaxation. In all cases under study, orbital relaxation is an important factor affecting the length of the chemical bond.


Bond Length Covalent Radius Organosilicon Compound Orbital Relaxation Simple Empirical Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. I. Ermakov, “Orbital relaxation, electronic structure, and properties of some classes of heterogeneous compounds,” Abstract of Doctoral Dissertation, Russian Chemical Technological University, Moscow (1993), p. 433.Google Scholar
  2. 2.
    A. I. Ennakov, “Orbital relaxation, electronic structure, and properties of some classes of heterogeneous compounds,” Abstract of Doctoral Dissertation, Russian Chemical Technological University, Moscow (1993), p. 32.Google Scholar
  3. 3.
    S. S. Batsanov,Structural Refractometry [in Russian], Vysshaya Shkola, Moscow (1976).Google Scholar
  4. 4.
    O. P. Charkin,Stability and Structure of Gaseous Inorganic Molecules, Radicals, and Ions [in Russian], Nauka, Moscow (1980).Google Scholar
  5. 5.
    A. I. Ermakov, “Investigation and analysis of cyclic heteroatomic silicon-containing compounds,” Chemical Sciences Candidate’s Dissertation, Moscow (1975), p. 182.Google Scholar
  6. 6.
    A. I. Ermakov,Zh. Strukt. Khim.,32, No. 4, 3–10 (1991).Google Scholar
  7. 7.
    V. A. Naumov and O. N. Kataeva,Molecular Structure of Oxygen and Sulfur Organic Compounds in the Gas Phase [in Russian], Nauka, Moscow (1990), p. 192.Google Scholar
  8. 8.
    I. Hargittai,Structure of Gaseous Sulfur Compounds [Russian translation], Center for Scientific and Technical Translations, No. D-05827, Moscow (1982), p. 411.Google Scholar
  9. 9.
    A. F. Skryshevskii, V. P. Klochkov, and Yu. V. Pasechnik,Zh. Strukt. Khim.,2, No. 2, 140–146 (1961).Google Scholar
  10. 10.
    M. Yokoi,Bull. Chem. Soc. Jpn.,30, No. 1, 100–109 (1957).CrossRefGoogle Scholar
  11. 11.
    B. Czákvári, Z. Wagner, P. Gömöry, et al.,J. Organomet. Chem.,107, No. 3, 287–294 (1976).CrossRefGoogle Scholar
  12. 12.
    M. J. Barrow, E. A. V. Ebsworth, and M. M. Harding,Acta Crystallogr.,B35, No. 9, 2093–2099 (1979).Google Scholar
  13. 13.
    A. Almenningen et al.,Acta Chem. Scand.,22, No. 9, 2455–2460 (1963).CrossRefGoogle Scholar
  14. 14.
    W. Airey et al.,Trans. Faraday Soc.,77, No. 3, 551–556 (1970).CrossRefGoogle Scholar
  15. 15.
    A. I. Gusev et al.,Zh. Strukt. Khim.,17, No. 5, 944–945 (1976).Google Scholar
  16. 16.
    C. Glidwell and D. C. Lues,Acta Crystallogr.,B34, No. 1, 124–128 (1978).Google Scholar
  17. 17.
    C. Glidwell and D. C. Lues,J. Organomet. Chem.,212, No. 3, 291–300 (1981).CrossRefGoogle Scholar
  18. 18.
    A. I. Gusev et al.,Zh. Strukt. Khim.,24, No. 3, 178–179 (1983).Google Scholar
  19. 19.
    V. E. Shklover et al.,Dokl. Akad. Nauk SSSR,253, No. 2, 341–345 (1980).Google Scholar
  20. 20.
    D. W. Rankin and H. E. Robertson,J. Chem. Soc., Dalton Trans., No. 2, 265–269 (1983).Google Scholar
  21. 21.
    Q. Shen,J. Mol. Struct.,102, Nos. 3–4, 325–332 (1983).CrossRefGoogle Scholar
  22. 22.
    V. E. Shklover et al.,Zh. Strukt. Khim.,26, No. 2, 125–133 (1985).Google Scholar
  23. 23.
    O’Keeffe et al.,Acta Crystallogr.,B34, No. 1, 27–32 (1978).Google Scholar
  24. 24.
    V. A. Ponomarenko and M. A. Ignatenko,Chemistry of Fluorine- and Silicon-Containing Organic Compounds [in Russian], Nauka, Moscow (1979), p. 191.Google Scholar
  25. 25.
    E. A. Zharikova, “Electronic structure and molecular properties of haloalkylchlorosilanes and their functional derivatives,” Chemical Sciences Candidate’s Dissertation, Moscow (1987), p. 179.Google Scholar
  26. 26.
    V. Typke, M. Dakkouri, and M. Sciele,Z. Naturforsch.,A35, No. 12, 1402–1407 (1980).Google Scholar
  27. 27.
    H. G. Kraft, B. Haas, and W. Zeil,ibid.,A34, No. 12, 1458–1462 (1979).Google Scholar
  28. 28.
    J. Goubea, F. Hauschke, and A. Ruoff,Z. Anorg. Allg. Chem.,366, Nos. 3–4, 113–120 (1969).CrossRefGoogle Scholar
  29. 29.
    C. G. Pitt,Chem. Commun., No. 15, 816–818 (1971).Google Scholar
  30. 30.
    R. W. Davis, A. G. Robiette, and M. C. L. Gerry,J. Mol. Spectrosc,83, No. 1, 185–201 (1980).CrossRefGoogle Scholar
  31. 31.
    é. Ya. Lukevitz, O. A. Pudova, and R. Ya. Sturkovich,Molecular Structure of Organosilicon Compounds [in Russian], Zinatne, Riga (1988).Google Scholar
  32. 32.
    Chemist’s Handbook [in Russian], Vol. 1 (1966), pp. 325–384.Google Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • A. I. Ermakov
    • 1
  • V. S Ponomarev
    • 1
  • N. A. Makrushin
    • 1
  • V. A. Kochetov
    • 1
  1. 1.Novomoskovsk InstituteD. I. Mendeleev Russian Chemical Technological UniversityRussia

Personalised recommendations