Skip to main content
Log in

Empirical model of orbital relaxation and interatomic distances in molecules with polar chemical bonds

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Orbital relaxation is treated as one of the reasons for shortening of chemical bonds with respect to the sum of the covalent radii of interacting atoms. The C-O, Si-O, Si-C, Si-H, Si-F, and Si-Cl bond lengths in organic and inorganic silicon compounds and of E-H and E-F bonds in diatomic hydrides and absolute-valent fluorides (E is a second-period element) are considered in terms of a simple empirical model of orbital relaxation. In all cases under study, orbital relaxation is an important factor affecting the length of the chemical bond.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. I. Ermakov, “Orbital relaxation, electronic structure, and properties of some classes of heterogeneous compounds,” Abstract of Doctoral Dissertation, Russian Chemical Technological University, Moscow (1993), p. 433.

    Google Scholar 

  2. A. I. Ennakov, “Orbital relaxation, electronic structure, and properties of some classes of heterogeneous compounds,” Abstract of Doctoral Dissertation, Russian Chemical Technological University, Moscow (1993), p. 32.

    Google Scholar 

  3. S. S. Batsanov,Structural Refractometry [in Russian], Vysshaya Shkola, Moscow (1976).

    Google Scholar 

  4. O. P. Charkin,Stability and Structure of Gaseous Inorganic Molecules, Radicals, and Ions [in Russian], Nauka, Moscow (1980).

    Google Scholar 

  5. A. I. Ermakov, “Investigation and analysis of cyclic heteroatomic silicon-containing compounds,” Chemical Sciences Candidate’s Dissertation, Moscow (1975), p. 182.

  6. A. I. Ermakov,Zh. Strukt. Khim.,32, No. 4, 3–10 (1991).

    CAS  Google Scholar 

  7. V. A. Naumov and O. N. Kataeva,Molecular Structure of Oxygen and Sulfur Organic Compounds in the Gas Phase [in Russian], Nauka, Moscow (1990), p. 192.

    Google Scholar 

  8. I. Hargittai,Structure of Gaseous Sulfur Compounds [Russian translation], Center for Scientific and Technical Translations, No. D-05827, Moscow (1982), p. 411.

    Google Scholar 

  9. A. F. Skryshevskii, V. P. Klochkov, and Yu. V. Pasechnik,Zh. Strukt. Khim.,2, No. 2, 140–146 (1961).

    CAS  Google Scholar 

  10. M. Yokoi,Bull. Chem. Soc. Jpn.,30, No. 1, 100–109 (1957).

    Article  CAS  Google Scholar 

  11. B. Czákvári, Z. Wagner, P. Gömöry, et al.,J. Organomet. Chem.,107, No. 3, 287–294 (1976).

    Article  Google Scholar 

  12. M. J. Barrow, E. A. V. Ebsworth, and M. M. Harding,Acta Crystallogr.,B35, No. 9, 2093–2099 (1979).

    CAS  Google Scholar 

  13. A. Almenningen et al.,Acta Chem. Scand.,22, No. 9, 2455–2460 (1963).

    Article  Google Scholar 

  14. W. Airey et al.,Trans. Faraday Soc.,77, No. 3, 551–556 (1970).

    Article  Google Scholar 

  15. A. I. Gusev et al.,Zh. Strukt. Khim.,17, No. 5, 944–945 (1976).

    CAS  Google Scholar 

  16. C. Glidwell and D. C. Lues,Acta Crystallogr.,B34, No. 1, 124–128 (1978).

    Google Scholar 

  17. C. Glidwell and D. C. Lues,J. Organomet. Chem.,212, No. 3, 291–300 (1981).

    Article  Google Scholar 

  18. A. I. Gusev et al.,Zh. Strukt. Khim.,24, No. 3, 178–179 (1983).

    CAS  Google Scholar 

  19. V. E. Shklover et al.,Dokl. Akad. Nauk SSSR,253, No. 2, 341–345 (1980).

    CAS  Google Scholar 

  20. D. W. Rankin and H. E. Robertson,J. Chem. Soc., Dalton Trans., No. 2, 265–269 (1983).

  21. Q. Shen,J. Mol. Struct.,102, Nos. 3–4, 325–332 (1983).

    Article  CAS  Google Scholar 

  22. V. E. Shklover et al.,Zh. Strukt. Khim.,26, No. 2, 125–133 (1985).

    CAS  Google Scholar 

  23. O’Keeffe et al.,Acta Crystallogr.,B34, No. 1, 27–32 (1978).

    CAS  Google Scholar 

  24. V. A. Ponomarenko and M. A. Ignatenko,Chemistry of Fluorine- and Silicon-Containing Organic Compounds [in Russian], Nauka, Moscow (1979), p. 191.

    Google Scholar 

  25. E. A. Zharikova, “Electronic structure and molecular properties of haloalkylchlorosilanes and their functional derivatives,” Chemical Sciences Candidate’s Dissertation, Moscow (1987), p. 179.

  26. V. Typke, M. Dakkouri, and M. Sciele,Z. Naturforsch.,A35, No. 12, 1402–1407 (1980).

    Google Scholar 

  27. H. G. Kraft, B. Haas, and W. Zeil,ibid.,A34, No. 12, 1458–1462 (1979).

    Google Scholar 

  28. J. Goubea, F. Hauschke, and A. Ruoff,Z. Anorg. Allg. Chem.,366, Nos. 3–4, 113–120 (1969).

    Article  Google Scholar 

  29. C. G. Pitt,Chem. Commun., No. 15, 816–818 (1971).

  30. R. W. Davis, A. G. Robiette, and M. C. L. Gerry,J. Mol. Spectrosc,83, No. 1, 185–201 (1980).

    Article  CAS  Google Scholar 

  31. é. Ya. Lukevitz, O. A. Pudova, and R. Ya. Sturkovich,Molecular Structure of Organosilicon Compounds [in Russian], Zinatne, Riga (1988).

    Google Scholar 

  32. Chemist’s Handbook [in Russian], Vol. 1 (1966), pp. 325–384.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated fromZhumal Struktumoi Khimii, Vol. 38, No. 3, pp. 438–446, May–June, 1997.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ermakov, A.I., Ponomarev, V.S., Makrushin, N.A. et al. Empirical model of orbital relaxation and interatomic distances in molecules with polar chemical bonds. J Struct Chem 38, 358–365 (1997). https://doi.org/10.1007/BF02763599

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02763599

Keywords

Navigation