Skip to main content
Log in

Characterization of a poly(3-hydroxybutyrate) depolymerase fromaureobacterium saperdae: Active site and kinetics of hydrolysis studies

  • Published:
Journal of environmental polymer degradation Aims and scope Submit manuscript

Abstract

An extracellular poly(3-hydroxybutyrate) (PHB) depolymerase was purified fromAureobacterium saperdae cultural medium by using hydrophobic interaction chromatography. The isolated enzyme was composed of a single polypeptide chain with a molecular mass of 42.7 kDa as determined by SDS-PAGE and by native gel filtration on TSK-HW-55S. The enzyme was not a glycoprotein. Its optimum activity occurred at pH 8.0 and it showed a broad pH stability, ranging from pH 3 to pH 11.N-Bromosuccinamide and 2-hydroxy-5-nitrobenzyl bromide completely inactivated the enzyme, suggesting the involvement of tryptophan residues at the active site of the protein. The enzyme was very sensitive to diisopropyl fluorophosphate and diazo-dl-norleucine methyl ester, showing the importance of serine and carboxyl groups. The modification of cysteine residues byp-hydroxy mercuricbenzoate did not cause a loss of activity, whereas dithiothreitol rapidly inactivated the enzyme, revealing the presence of disulfide bonds.A saperdae depolymerase acted on the surface layer of PHB films and the degradation proceeded by surface erosion releasing monomers and dimers of 3-hydroxybutric acid. The degradation of PHB films byA. saperdae depolymerase was partially inhibited in the presence of excess amounts of enzyme. This phenomenon, already observed by Mukaiet al. with poly(hydroxyalkanoates) depolymerases fromAlcaligenes faecalis, Pseudomonas pickettii, andComamonas testosteroni, was analyzed according to the kinetic model proposed by these authors. The experimental data evidenced a general agreement with the kinetic model, although higher initial degradation rates were found withA. saperdae depolymerase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Doi (1990)Microbial Polyester, VCH, New York.

    Google Scholar 

  2. S. Y. Lee (1996)Biotechnol. Bioeng. 49, 1–14.

    Article  CAS  Google Scholar 

  3. A. J. Anderson and E. A. Dawes (1990)Microbiol. Rev. 54, 450–472.

    CAS  Google Scholar 

  4. J. Mergaert, A. Webb, C. Anderson, A. Wouters, and J. Swings (1993)Appl. Environ. Microbiol. 59, 3233–3238.

    CAS  Google Scholar 

  5. D. Jendrossek, I. Knoke, R. B. Habibian, A. Steinbuchel, and H. G. Schlegel (1993)J. Environ. Polym. Degrad. 1, 53–63.

    Article  CAS  Google Scholar 

  6. A. Schimer, D. Jendrossek, and H. G. Schlegel (1993)Appl. Environ. Microbiol. 59, 1220–1227.

    Google Scholar 

  7. K. Mukai, K. Yamada, and Y. Doi (1993)Polym. Degrad. Stabil. 41, 85–91.

    Article  CAS  Google Scholar 

  8. J. Mergaert, C. Anderson, A. Wouters, J. Swings, and K. Kersters (1992)FEMS Microbiol. Rev. 103, 317–321.

    Article  CAS  Google Scholar 

  9. F. P. Delafield, M. Dourdoroff, N. J. Palleroni, C. J. Lusty, and R. Contopoulos (1965)J. Bacteriol. 90, 1455–1466.

    CAS  Google Scholar 

  10. D. Jendrossek, M. Backhaus, and M. Andermann. (1995).Can. J. Microbiol. 41, 160–169.

    CAS  Google Scholar 

  11. A. Schirmer, C. Matz, and D. Jendrossek (1995)Can. J. Microbiol. 41, 170–179.

    Google Scholar 

  12. K. Nakayama, T. Saito, T. Fukui, Y. Shirakura, and K. Tomita (1985) Biochim. Biophys. Acta827, 63–72.

    CAS  Google Scholar 

  13. K. Yamada, K. Mukai, and Y. Doi (1993)Int. J. Biol. Macromol. 15, 215–220.

    Article  CAS  Google Scholar 

  14. C. L. Brucato and S. S. Wong (1991)Arch. Biochem. Biophys. 290, 497–502.

    Article  CAS  Google Scholar 

  15. T. Tanio, T. Fukui, Y. Shirakura, T. Saito, K. Tomita, T. Kahio, and S. Masamune (1982)Eur. J. Biochem. 124, 71–77.

    Article  CAS  Google Scholar 

  16. M. Shiraki, T. Shimada, M. Tatsumichi, and T. Saito (1995)J. Environ. Polym. Degrad. 3, 13–21.

    Article  CAS  Google Scholar 

  17. Y. Shirakura, T. Fukui, T. Saito, Y. Okamoto, T. Narikawa, K. Koide, K. Tomita, T. Takemasa, and S. Masamune (1986)Biochim. Biophys. Acta 880, 46–53.

    CAS  Google Scholar 

  18. H. Brandi, B. Aeberli, R. Bachofen, I. Schwegler, H. M. Müller, M. H. Bürger, T. Hoffmann, U. D. Lengweiler, and D. Seebach (1995)Can. J. Microbiol. 41, 180–186.

    Article  Google Scholar 

  19. Y. Kumagai, Y. Kanesawa, and Y. Doi (1992)Makrom. Chem. 193, 53–57.

    Article  CAS  Google Scholar 

  20. G. Tomasi and M. Scandola (1995)J. M. S. Pure Appl. Chem. A32, 671–681.

    Article  CAS  Google Scholar 

  21. K. Mukai, K. Yamada, and Y. Doi (1993)Int. J. Biol. Macromol. 15, 361–366.

    Article  CAS  Google Scholar 

  22. P. Sadocco, C. Bulli, G. Elegir, A. Seves, and E. Martuscelli (1993)Makromol. Chem. 194, 2675–2686.

    Article  CAS  Google Scholar 

  23. D. Jendrossek, A. Frisse, A. Behrends, M. Andermann, H. D. Kratzin, T. Stanislawski, and T. G. Schlegel (1995)J. Bacteriol. 177, 596–607.

    CAS  Google Scholar 

  24. N. R. Gilkes, B. Henrissat, D. G. Kilburn, R. C. Miller Jr., and R. A. J. Warren (1991)Microbiol. Rev. 55, 303–315.

    CAS  Google Scholar 

  25. Y. Kanesawa, N. Tanahashi, and Y. Doi (1994)Polym. Degrad. Stabil. 45, 179–185.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sadocco, P., Nocerino, S., Dubini-Paglia, E. et al. Characterization of a poly(3-hydroxybutyrate) depolymerase fromaureobacterium saperdae: Active site and kinetics of hydrolysis studies. J Environ Polym Degr 5, 57–65 (1997). https://doi.org/10.1007/BF02763569

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02763569

Key Words

Navigation