Characterization of a poly(3-hydroxybutyrate) depolymerase fromaureobacterium saperdae: Active site and kinetics of hydrolysis studies

  • Patrizia Sadocco
  • Silvia Nocerino
  • Ernestina Dubini-Paglia
  • Alberto Seves
  • Graziano Elegir


An extracellular poly(3-hydroxybutyrate) (PHB) depolymerase was purified fromAureobacterium saperdae cultural medium by using hydrophobic interaction chromatography. The isolated enzyme was composed of a single polypeptide chain with a molecular mass of 42.7 kDa as determined by SDS-PAGE and by native gel filtration on TSK-HW-55S. The enzyme was not a glycoprotein. Its optimum activity occurred at pH 8.0 and it showed a broad pH stability, ranging from pH 3 to pH 11.N-Bromosuccinamide and 2-hydroxy-5-nitrobenzyl bromide completely inactivated the enzyme, suggesting the involvement of tryptophan residues at the active site of the protein. The enzyme was very sensitive to diisopropyl fluorophosphate and diazo-dl-norleucine methyl ester, showing the importance of serine and carboxyl groups. The modification of cysteine residues byp-hydroxy mercuricbenzoate did not cause a loss of activity, whereas dithiothreitol rapidly inactivated the enzyme, revealing the presence of disulfide bonds.A saperdae depolymerase acted on the surface layer of PHB films and the degradation proceeded by surface erosion releasing monomers and dimers of 3-hydroxybutric acid. The degradation of PHB films byA. saperdae depolymerase was partially inhibited in the presence of excess amounts of enzyme. This phenomenon, already observed by Mukaiet al. with poly(hydroxyalkanoates) depolymerases fromAlcaligenes faecalis, Pseudomonas pickettii, andComamonas testosteroni, was analyzed according to the kinetic model proposed by these authors. The experimental data evidenced a general agreement with the kinetic model, although higher initial degradation rates were found withA. saperdae depolymerase.

Key Words

Poly(3-hydroxybutyrate) depolymerase enzymatic degradation poly(3-hydroxybutyrate) Aureobacterium saperdae kinetic studies 


  1. 1.
    Y. Doi (1990)Microbial Polyester, VCH, New York.Google Scholar
  2. 2.
    S. Y. Lee (1996)Biotechnol. Bioeng. 49, 1–14.CrossRefGoogle Scholar
  3. 3.
    A. J. Anderson and E. A. Dawes (1990)Microbiol. Rev. 54, 450–472.Google Scholar
  4. 4.
    J. Mergaert, A. Webb, C. Anderson, A. Wouters, and J. Swings (1993)Appl. Environ. Microbiol. 59, 3233–3238.Google Scholar
  5. 5.
    D. Jendrossek, I. Knoke, R. B. Habibian, A. Steinbuchel, and H. G. Schlegel (1993)J. Environ. Polym. Degrad. 1, 53–63.CrossRefGoogle Scholar
  6. 6.
    A. Schimer, D. Jendrossek, and H. G. Schlegel (1993)Appl. Environ. Microbiol. 59, 1220–1227.Google Scholar
  7. 7.
    K. Mukai, K. Yamada, and Y. Doi (1993)Polym. Degrad. Stabil. 41, 85–91.CrossRefGoogle Scholar
  8. 8.
    J. Mergaert, C. Anderson, A. Wouters, J. Swings, and K. Kersters (1992)FEMS Microbiol. Rev. 103, 317–321.CrossRefGoogle Scholar
  9. 9.
    F. P. Delafield, M. Dourdoroff, N. J. Palleroni, C. J. Lusty, and R. Contopoulos (1965)J. Bacteriol. 90, 1455–1466.Google Scholar
  10. 10.
    D. Jendrossek, M. Backhaus, and M. Andermann. (1995).Can. J. Microbiol. 41, 160–169.Google Scholar
  11. 11.
    A. Schirmer, C. Matz, and D. Jendrossek (1995)Can. J. Microbiol. 41, 170–179.Google Scholar
  12. 12.
    K. Nakayama, T. Saito, T. Fukui, Y. Shirakura, and K. Tomita (1985) Biochim. Biophys. Acta827, 63–72.Google Scholar
  13. 13.
    K. Yamada, K. Mukai, and Y. Doi (1993)Int. J. Biol. Macromol. 15, 215–220.CrossRefGoogle Scholar
  14. 14.
    C. L. Brucato and S. S. Wong (1991)Arch. Biochem. Biophys. 290, 497–502.CrossRefGoogle Scholar
  15. 15.
    T. Tanio, T. Fukui, Y. Shirakura, T. Saito, K. Tomita, T. Kahio, and S. Masamune (1982)Eur. J. Biochem. 124, 71–77.CrossRefGoogle Scholar
  16. 16.
    M. Shiraki, T. Shimada, M. Tatsumichi, and T. Saito (1995)J. Environ. Polym. Degrad. 3, 13–21.CrossRefGoogle Scholar
  17. 17.
    Y. Shirakura, T. Fukui, T. Saito, Y. Okamoto, T. Narikawa, K. Koide, K. Tomita, T. Takemasa, and S. Masamune (1986)Biochim. Biophys. Acta 880, 46–53.Google Scholar
  18. 18.
    H. Brandi, B. Aeberli, R. Bachofen, I. Schwegler, H. M. Müller, M. H. Bürger, T. Hoffmann, U. D. Lengweiler, and D. Seebach (1995)Can. J. Microbiol. 41, 180–186.CrossRefGoogle Scholar
  19. 19.
    Y. Kumagai, Y. Kanesawa, and Y. Doi (1992)Makrom. Chem. 193, 53–57.CrossRefGoogle Scholar
  20. 20.
    G. Tomasi and M. Scandola (1995)J. M. S. Pure Appl. Chem. A32, 671–681.CrossRefGoogle Scholar
  21. 21.
    K. Mukai, K. Yamada, and Y. Doi (1993)Int. J. Biol. Macromol. 15, 361–366.CrossRefGoogle Scholar
  22. 22.
    P. Sadocco, C. Bulli, G. Elegir, A. Seves, and E. Martuscelli (1993)Makromol. Chem. 194, 2675–2686.CrossRefGoogle Scholar
  23. 23.
    D. Jendrossek, A. Frisse, A. Behrends, M. Andermann, H. D. Kratzin, T. Stanislawski, and T. G. Schlegel (1995)J. Bacteriol. 177, 596–607.Google Scholar
  24. 24.
    N. R. Gilkes, B. Henrissat, D. G. Kilburn, R. C. Miller Jr., and R. A. J. Warren (1991)Microbiol. Rev. 55, 303–315.Google Scholar
  25. 25.
    Y. Kanesawa, N. Tanahashi, and Y. Doi (1994)Polym. Degrad. Stabil. 45, 179–185.CrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • Patrizia Sadocco
    • 1
  • Silvia Nocerino
    • 1
  • Ernestina Dubini-Paglia
    • 2
  • Alberto Seves
    • 1
  • Graziano Elegir
    • 1
  1. 1.Stazione Sperimentale Cellulosa, Carta e Fibre TessiliVegetali ed ArtificialiMilanoItaly
  2. 2.Dipartmento de Chimica Fisica ed ElettrochimicaUniversità di MilanoMilanoItaly

Personalised recommendations