Researches on Population Ecology

, Volume 40, Issue 3, pp 259–269 | Cite as

Anthropogenic, ecological and genetic factors in extinction and conservation

  • Russell Lande
Special Feature


Anthropogenic factors constitute the primary deterministic causes of species declines, endangerment and extinction: land development, overexploitation, species translocations and introductions, and pollution. The primary anthropogenic factors produce ecological and genetic effects contributing to extinction risk. Ecological factors include environmental stochasticity, random catastrophes, and metapopulation dynamics (local extinction and colonization) that are intensified by habitat destruction and fragmentation. Genetic factors include hybridization with nonadapted gene pools, and selective breeding and harvesting. In small populations stochastic factors are especially important, including the ecological factors of Allee effect, edge effects, and demographic stochasticity, and the genetic factors of inbreeding depression, loss of genetic variability, and fixation of new deleterious mutations. All factors affecting extinction risk are expressed, and can be evaluated, through their operation on population dynamics.

Key words

conservation demography ecology extinction risk genetics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allee, W. C., A. E. Emerson, O. Park, T. Park and K. P. Schmidt (1949)Principles of animal ecology. Saunders, Philadelphia.Google Scholar
  2. Andreassen, H. P., S. Halle and R. A. Ims (1996) Optimal width of movement corridors for root voles: not too narrow and not too wide.Journal of Applied Ecology 33: 63–70.Google Scholar
  3. Andrewartha, H. G. and L. C. Birch (1954)The distribution and abundance of animals. University of Chicago Press, Chicago.Google Scholar
  4. Allendorf, F. W. and R. S. Waples (1996) Conservation and genetics of salmonid fishes, pp. 238–280. In J. C. Avise and J. L. Hamrick (eds.)Conservation genetics: case histories from nature. Chapman and Hall, New York.Google Scholar
  5. Arnold, S. J. (1995) Monitoring quantitative genetic variation and evolution in captive populations. pp. 295–317. In J. Ballou, M. Gilpin and T. J. Foose (eds.)Population management for survival and recovery: analytical methods and strategies in small populations. Columbia University Press, New York.Google Scholar
  6. Atkinson, I. (1989) Introduced animals and extinctions. pp. 59–75. In D. Western and M. Pearl (eds.)Conservation for the twenty-first century. Oxford University Press, Oxford.Google Scholar
  7. Beddington, J. R. and R. M. May (1977) Harvesting populations in a randomly fluctuating environment.Science 197: 463–465.PubMedGoogle Scholar
  8. Brown, J. H. and A. Kodric-Brown (1977) Turnover rates in insular biogeography: effect of immigration on extinction.Ecology 58: 445–449.Google Scholar
  9. Burkey, T. V. (1989) Extinction in nature reserves: the effect of fragmentation and the importance of migration between reserve fragments.Oikos 55: 75–81.Google Scholar
  10. Burkey, T. V.(1995) Extinction rates in archipelagoes: implications for populations in fragmented habitats.Conservation Biology 9: 527–541.Google Scholar
  11. Bürger, R. and R. Lande (1994) On the distribution of the mean and variance of a quantitative trait under mutation-selection-drift balance.Genetics 138: 901–912.PubMedGoogle Scholar
  12. Bürger, R. and M. Lynch (1995) Evolution and extinction in a changing environment: a quantitative-genetic analysis.Evolution 49: 151–163.Google Scholar
  13. Caughley, G. (1994) Directions in conservation biology.Journal of Animal Ecology 63: 215–244.Google Scholar
  14. Caughley, G. and A. Gunn (1996)Conservation biology in theory and practice. Blackwell Science, London.Google Scholar
  15. Charlesworth, D. and B. Charlesworth (1987) Inbreeding depression and its evolutionary consequences.Annual Review of Ecology and Systematics 18: 237–268.Google Scholar
  16. Clark, C. W. (1973) The economics of overexploitation.Science 181: 630–634.PubMedGoogle Scholar
  17. Clark, C. W. (1990)Mathematical bioeconomics, 2nd edn. Wiley, New York.Google Scholar
  18. Coope, G. R. (1979) Late Cenozoic fossil Coleoptera: evolution, biogeography, and ecology.Annual Review of Ecology and Systematics 10: 247–267.Google Scholar
  19. Crow, J. F. and M. Kimura (1970)Introduction to population genetics theory. Harper and Row, New York.Google Scholar
  20. DeMauro, M. M. (1993) Relationship of breeding system to rarity in the Lakeside Daisy(Hymenoxys acaulis var. glabra).Conservation Biology 7: 542–550.Google Scholar
  21. Doak, D. (1989) Spotted owls and old growth logging in the Pacific Northwest.Conservation Biology 3: 389–396.Google Scholar
  22. Dobson, A. P. and R. M. May (1986) Disease and conservation. pp. 345–365.In M. Soulé (ed.)Conservation biology: the science of scarcity and diversity. Sinauer, Sunderland.Google Scholar
  23. Dobzhansky, Th. (1970)Genetics of the evolutionary process. Columbia University Press, New York.Google Scholar
  24. Endler, J. (1977)Geographic variation, speciation, and cines. Princeton University Press, Princeton.Google Scholar
  25. Falconer, D. S. and T. F. C. Mackay (1996)Introduction to quantitative genetics, 4th edn. Longman, London.Google Scholar
  26. Frankham, R. (1995a) Inbreeding and extinction: a threshold effect.Conservation Biology 9: 792–799.Google Scholar
  27. Frankham, R. (1995b) Effective population size/adult population size ratios in wildlife: a review.Genetical Research 66: 95–107.Google Scholar
  28. Franklin, I. R. (1980) Evolutionary change in small populations, pp. 135–149.In M. Soulé and B. A. Wilcox (eds.)Conservation biology: an evolutionary-ecological perspective. Sinauer Associates, Sunderland.Google Scholar
  29. Gilpin, M. E. and M. E. Soulé (1986) Minimum viable populations: processes of species extinction, pp. 19–34.In M. E. Soulé (ed.)Conservation biology: the science of scarcity and diversity. Sinauer Associates, Sunderland.Google Scholar
  30. Gomulkiewicz, R. and R. D. Holt (1995) When does evolution by natural selection prevent extinction?Evolution 49: 201–207.Google Scholar
  31. Grant, P. R. and T. D. Price (1981) Population variation in continuously varying traits as an ecological genetics problem.American Zoologist 21: 795–811.Google Scholar
  32. Groombridge, B. (ed.) (1992)Global biodiversity: status of the earth’s living resources. Chapman and Hall, London.Google Scholar
  33. Hanski, I. and M. E. Gilpin (eds.) (1997)Metapopulation biology. Academic Press, London.Google Scholar
  34. Hanski, I. and M. Gyllenberg (1993) Two general metapopulation models and the core-satellite species hypothesis.American Naturalist 142: 17–41.Google Scholar
  35. Hanski, I., J. Poyry, T. Pakkala and M. Kuussaari (1995) Multiple equilibria in metapopulation dynamics.Nature 377: 618–621.Google Scholar
  36. Hedrick, P. W. (1995) Gene flow and genetic restoration: the Florida panther as a case study.Conservation Biology 9: 996–1007.Google Scholar
  37. Hedrick, P. W. (1996) Bottleneck(s) or metapopulation in cheetahs.Conservation Biology 10: 897–899.Google Scholar
  38. Hess, G. (1996) Disease in metapopulation models: implications for conservation.Ecology 77: 1617–1632.Google Scholar
  39. Hoelzel, A. R., J. Halley, S. J. O’Brien, C. Campagna, T. Arnbom, B. LeBoeuf, K. Rails and G. A. Dover (1993) Elephant seal genetic variation and the use of simulation models to investigate historical population bottlenecks.Journal of Heredity 84: 443–449.PubMedGoogle Scholar
  40. Jiménez, J. A., K. A. Hughes, G. Alaks, L. Graham and R. C. Lacy (1994) An experimental study of inbreeding depression in a natural habitat.Science 266: 271–273.PubMedGoogle Scholar
  41. Keightley, P. D. (1994) The distribution of mutation effects on viability inDrosophila melanogaster.Genetics 138: 1315–1322.PubMedGoogle Scholar
  42. Keller, L. F., P. Arcese, J. N. M. Smith, W. M. Hochachka and S. C. Stearns (1994) Selection against inbred song sparrows during a natural population bottleneck.Nature 372: 356–357.PubMedGoogle Scholar
  43. Kierstead, H. and L. B. Slobodkin (1953) The sizes of water masses containing plankton bloom.Journal of Marine Research 12: 141–147.Google Scholar
  44. Lacy, R. C., A. Petric and M. Warneke. (1993) Inbreeding and out-breeding in captive populations of wild animal species, pp. 352–374.In N. W. Thornhill (ed.)The natural history of inbreeding and outbreeding: theoretical and empirical perspectives. University of Chicago Press, Chicago.Google Scholar
  45. Lande, R. (1987) Extinction thresholds in demographic models of territorial populations.American Naturalist 130: 624–635.Google Scholar
  46. Lande, R. (1988a) Demographic models of the northern spotted owl(Strix occidentalis caurina).Oecologia 75: 601–607.Google Scholar
  47. Lande, R. (1988b) Genetics and demography in biological conservation.Science 241: 1455–1460.PubMedGoogle Scholar
  48. Lande, R. (1993) Risks of population extinction from demographic and environmental stochasticity and random catastrophes.American Naturalist 142: 911–927.Google Scholar
  49. Lande, R. (1994) Risk of population extinction from fixation of new deleterious mutations.Evolution 48: 1460–1469.Google Scholar
  50. Lande, R. (1995) Mutation and conservation.Conservation Biology 9:782–791.Google Scholar
  51. Lande, R. (1998) Demographic stochasticity and Allee effect on a scale with isotropic noise.Oikos 83: 353–358.Google Scholar
  52. Lande, R. and G. F. Barrowclough (1987) Effective population size, genetic variation, and their use in population management. pp. 87–123.In M. Soulé (ed.)Viable populations for conservation. Cambridge University Press, Cambridge.Google Scholar
  53. Lande, R., S. Engen and B. E. Sæther (1994) Optimal harvesting, economic discounting, and extinction risk in fluctuating populations.Nature 372: 88–90.Google Scholar
  54. Lande, R., S. Engen and B. -E. Sæther (1995) Optimal harvesting of fluctuating populations with a risk of extinction.American Naturalist 145: 728–745.Google Scholar
  55. Lande, R., S. Engen and B. -E. Ssether (1998) Extinction times in finite metapopulation models with stochastic local dynamics.Oikos 83: 383–389.Google Scholar
  56. Lande, R. and D. W. Schemske (1984) The evolution of self-fertilization and inbreeding depression in plants. I. Genetic models.Evolution 39: 24–40.Google Scholar
  57. Lande, R., D. W. Schemske and S. T. Schultz (1994) High inbreeding depression, selective interference among loci, and the threshold selfing rate for purging recessive lethal mutations.Evolution 48: 965–978.Google Scholar
  58. Lande, R. and S. Shannon (1996) The role of genetic variability in adaptation and population persistence in a changing environment.Evolution 50: 434–437.Google Scholar
  59. Lande, R., B. -E. Sæther and S. Engen (1997) Threshold harvesting for sustainability of fluctuating resources.Ecology 78: 1341–1350.Google Scholar
  60. Levin, D. A., J. Francisco-Ortega and R. K. Jansen (1996) Hybridization and the extinction of rare plant species.Conservation Biology 10: 10–16.Google Scholar
  61. Levins, R. (1970) Extinction. pp. 77–107.In M. Gerstenhaber (ed.)Some mathematical problems in biology. American Mathematical Society, Providence.Google Scholar
  62. Lewontin, R. C. and L. C. Birch (1966) Hybridization as a source of variation for adaptation to new environments.Evolution 20: 315–336.Google Scholar
  63. Lopez, M. A. and C. Lopez-Fanjul (1993a) Spontaneous mutation for a quantitative trait in Drosophila melanogaster. I. Response to artificial selection.Genetical Research 61: 107–116.PubMedGoogle Scholar
  64. Lopez, M. A. and C. Lopez-Fanjul (1993b) Spontaneous mutation for a quantitative trait inDrosophila melanogaster. II. Distribution of mutant effects on the trait and fitness.Genetical Research 61: 117–126.PubMedGoogle Scholar
  65. Lovejoy, T. E., R. O. Bierregaard, Jr., A.B. Rylands, J. R. Malcolm, C. E. Quintela, L. H. Harper, K. S. Brown, Jr., A. H. Powell, G. V. N. Powell, H. O. R. Schubart and M. B. Hays (1986) Edge and other effects of isolation on Amazon forest fragments, pp. 257–285.In M. Soulé(ed.)Conservation biology: the science of scarcity and diversity. Sinauer Associates, Sunderland.Google Scholar
  66. Ludwig, D., R. Hilborn and C. Walters (1993) Uncertainty, resource exploitation, and conservation: lessons from history.Science 260: 17, 36.Google Scholar
  67. Lynch, M., J. Conery and R. Burger (1995a) Mutational meltdown in sexual populations.Evolution 49: 1067–1080.Google Scholar
  68. Lynch, M., J. Conery and R. Bürger (1995b) Mutation accumulation and the extinction of small populations.American Naturalist 146: 489–518.Google Scholar
  69. Lynch, M. and R. Lande (1993) Evolution and extinction in response to environmental change. pp. 234–250.In P. Karieva, R. Huey and J. Kingsolver (eds.)Biotic interactions and global change. Sinauer Associates, Sunderland.Google Scholar
  70. MacArthur, R. H. and E. O. Wilson (1967)The theory of island biogeography. Princeton University Press, Princeton.Google Scholar
  71. Mackay, T. F. C., R. F. Lyman and M. S. Jackson (1992) Effects ofP element insertion on quantitative traits inDrosophila melanogaster.Genetics 130: 315–332.PubMedGoogle Scholar
  72. Malakoff, D. (1997) Extinction on the high seas.Science 277: 486–488.Google Scholar
  73. Maruyama, T. and M. Kimura (1980) Genetic variation and effective population size when local extinction and recolonization of subpopulations are frequent.Proceedings of the National Academy of Science of the USA 77: 6710–6714.Google Scholar
  74. May, R. M. (1976) Harvesting whale and fish populations.Nature 263: 91–92.Google Scholar
  75. May, R. M., J. R. Beddington, J. W. Horwood, and J. G. Shepherd (1978) Exploiting natural populations in an uncertain world.Mathematical Biosciences 42: 219–252.Google Scholar
  76. McKelvey, K., B. R. Noon and R. H. Lamberson (1993) Conservation planning for species occupying fragmented landscapes: the case of the northern spotted owl. pp. 424–450.In P. Karieva, R. Huey and J. Kingsolver (eds.)Biotic interactions and global change. Sinauer Associates, Sunderland.Google Scholar
  77. Miller, G. T., Jr. (1990)Living in the environment, 6th edn. Wadsworth, Belmont.Google Scholar
  78. Myers, R. A., J. Bridson and N. J. Barrowman (1995) Summary of worldwide spawner and recruitment data.Canadian Technical Report of Fisheries and Aquatic Sciences 2024.Google Scholar
  79. Nehlsen, W., J.E. Williams and J. A. Lichatowich (1991) Pacific salmon at the crossroads: stocks at risk from California, Oregon, Idaho and Washington.Fisheries 16: 4–21.Google Scholar
  80. ODEC (1991)The state of the environment. Organization for Economic Co-operation and Development, Paris.Google Scholar
  81. Okubo, A. (1980)Diffusion and ecological problems: mathematical models. Springer-Verlag, Berlin.Google Scholar
  82. Pease, C. M., R. Lande and J. J. Bull (1989) A model of population growth, dispersal and evolution in a changing environment.Ecology 70: 1657–1664.Google Scholar
  83. Peters, R. L. and T. E. Lovejoy (1992)Global warming and biological diversity. Yale University Press, New Haven and London.Google Scholar
  84. Pimm, S. L. (1991)The balance of nature? University of Chicago Press, Chicago.Google Scholar
  85. Rails, K. and J. D. Ballou (1983) Extinction: lessons from zoos. pp. 164–184.In C.M. Schonewald-Cox, S. M. Chambers, B. MacBryde and W. L. Thomas (eds.)Genetics and conservation: a reference for managing wild animal and plant populations. Benjamin/Cummings, Menlo Park.Google Scholar
  86. Ratner, S., R. Lande and B. B. Roper (1997) Population viability analysis of spring chinook salmon in the South Umpqua river, Oregon.Conservation Biology 11: 879–889.Google Scholar
  87. Robinson, S. K., F. R. Thompson III, T. M. Donovan, D. R. Whitehead and J. Faaborg (1995) Regional forest fragmentation and the nesting success of migratory birds.Science 267: 1987–1990.PubMedGoogle Scholar
  88. Roush, R. T. and J. A. McKenzie (1987) Ecological genetics of insecticide and acaricide resistance.Annual Review of Entomology 32: 361–380.PubMedGoogle Scholar
  89. Redford, K. H. (1992) The empty forest.BioScience 42: 412–422.Google Scholar
  90. Richter-Dyn, N. and N. S. Goel (1972) On the extinction of a colonizing species.Theoretical Population Biology 3: 406–433.PubMedGoogle Scholar
  91. Rosenberg, A.A., M. J. Fogarty, M. P. Sissenwine, J. R. Beddington and J. G. Shepherd (1993) Achieving sustainable use of renewable resources.Science 262: 828–829.PubMedGoogle Scholar
  92. Seehausen, O., J. van Alphen and F. Witte (1997) Cichlid fish diversity threatened by eutrophication that curbs sexual selection.Science 277: 1808–1811.Google Scholar
  93. Simmons, M. J. and J. F. Crow (1977) Mutations affecting fitness inDrosophila populations.Annual Review of Genetics 11: 49–78.PubMedGoogle Scholar
  94. Smith, F. A., J. L. Betancourt and J. H. Brown (1995) Evolution of body size in the woodrat over the past 25,000 years of climate change.Science 270: 2012–2014.Google Scholar
  95. Soulé, M. (1980) Thresholds for survival: maintaining fitness and evolutionary potential, pp. 151–169.In M. Soulé and B. A. Wilcox (eds.)Conservation biology: an evolutionary-ecological perspective. Sinauer Associates, Sunderland.Google Scholar
  96. Stokes, T.K., J. M. McGlade and R. Law (eds.) (1993)The exploitation of evolving resources. Lecture Notes in Biomathematics, vol. 99. Springer-Verlag, Berlin.Google Scholar
  97. Thomas, J. W., E. D. Forsman, J. B. Lint, E. C. Meslow, B. R. Noon and J. Verner (1990)A conservation strategy for the northern spotted owl. U.S. Government Printing Office, Washington, D.C.Google Scholar
  98. Vitousek, P. M. (1988) Diversity and biological invasions of oceanic islands, pp. 181–189.In E. O. Wilson (ed.)Biodiversity. National Academy Press, Washington, DC.Google Scholar
  99. Wayne, R. K. (1996) Conservation genetics in the Canidae. pp. 75–118.In J. C. Avise and J. L. Hamrick (eds.)Conservation genetics: case histories from nature. Chapman and Hall, New York.Google Scholar
  100. Wright, S. (1940) Breeding structure of populations in relation to speciation.American Naturalist 74: 232–248.Google Scholar
  101. Wright, S. (1969)Genetics and the evolution of populations. Vol. 2. The theory of gene frequencies. University of Chicago Press, Chicago.Google Scholar
  102. Young, T. P. (1994) Natural die-offs of large mammals: implications for conservation.Conservation Biology 8: 410–418.Google Scholar

Copyright information

© The Society of Population Ecology and Springer Japan 1998

Authors and Affiliations

  1. 1.Department of BiologyUniversity of OregonEugeneUSA

Personalised recommendations