Skip to main content
Log in

Power handling capabilities of superconducting YBCO thin films: Thermally induced nonlinearity effects

  • Published:
Journal of Superconductivity Aims and scope Submit manuscript

Abstract

We have measured the microwave power dependence of the surface impedance Zs of YBa2Cu3Ox thin films up to very high microwave power levels. Films with different crystal qualities, including one with a bicrystal Josephson junction, were investigated. The experiments included both frequency-domain and pulsed time-domain measurements using a 14 GHz TE011 dielectric cavity. Our results demonstrate that the dissipation of heat, generated by rf currents in the superconducting film, contributes to the observed nonlinearities in the surface resistance. The relative extent of this contribution is determined primarily by the film quality. A simple Fabry-Perot resonator model, combined with a cavity heat transfer model, was used to analyze the effects of such nonlinearities on the electromagnetic response of the dielectric cavity to a pulsed input signal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. R. Mansour et al.,IEEE Trans. Microwave Theory Tech. 44, 1213 (1996).

    Article  ADS  Google Scholar 

  2. G. C. Liang, D. Zhang, C. F. Shih, M. E. Johannson, R. S. Withers, A. C. Anderson, and D. E. Oates,IEEE Trans. Appl. Supercond. 5, 2652 (1995); Workshop notes, “The roleof superconducting technology in wireless communication systems,”IEEE MTT-S. Sarf Francisco, June (1996).

    Article  Google Scholar 

  3. D. Oates, P. P. Nguyen. G. Dresselhaus. M. S. Dressclhaus, C. W. Lam, and S. M. Ali,J. Supercon. 5, 361 (1992).

    Article  ADS  Google Scholar 

  4. M. A. Golosovsky. H. J. Snortland, and M. R. Beasly,Phys. Rev. 5 51, 6462 (1995).

    Article  Google Scholar 

  5. T. B. Samoilova,Supercon. Sci. Technol. 8, 259 (1995).

    Article  ADS  Google Scholar 

  6. J. Halbritter.Proc. of the 1972 Applied Superconductivity Conference, May 1–3, Annapolis, Maryland. 1972, p. 662.

  7. M. A. Hein, W. Diete, M. Getta, S. Hensen, T. Keiser, G. Müller, H. Piel, and H. Schlick,IEEE Trans. Appl. Supercond. 7, 2 (1997).

    Article  Google Scholar 

  8. H. Padamsee.IEEE Trans. Magn. MAG-19, 1322 (1983).

    Article  ADS  Google Scholar 

  9. A. VI. Gurevich and R. G. Mints.Rev. Mod. Phys. 59, 941 (1987).

    Article  ADS  Google Scholar 

  10. J. Wosik, L-M. Xie, D. Li, J. H. Miller, Jr. and S. A. Long,Czech. J. Phys. 46, 1133 (1996).

    Article  ADS  Google Scholar 

  11. A. N. Reznik. A. A. Zharov, and M. D. Chernobrovtseva,IEEE Trans. Appl. Supercond. 5, 2579 (1995).

    Article  Google Scholar 

  12. R. R. Mansour, B. Jolley. S. Ye, F. S. Thomson, and V. Dokas.IEEE Trans. Microwave Theory Tech. 44, 1322 (1996).

    Article  ADS  Google Scholar 

  13. M. F. Davis, J. Wosik, K. Forster. S. C. Deshmukh, H. R. Rampersad, S. Shah. P. Siemsen. J. C. Wolfe, and D. J. Economou,J. Appl. Phys. 69. 7182 (1991).

    Article  ADS  Google Scholar 

  14. H. Kinder, P. Berberich, B. Utz, and W. Prusseit,IEEE Trans. Appl. Supercond. 5, 1575 (1995).

    Article  Google Scholar 

  15. R. E. Collin,Foundation for Microwave Engineering (McGrawHill, New York, 1986), pp. 314–315; J. P. Turneaure and I. Weissman,J. Appl. Phys. 39, 4417 (1968).

    Google Scholar 

  16. A. M. Portis, H. Chaloupka, M. Jeck. H. Piel. and A. Pischke.Supercond. Sci. Technol. 4, 1715 (1991). J. Halbritter,J. Appl. Phys. 41, 4581 (1970).

    Article  Google Scholar 

  17. H. L. Laquer, F. J. Edeskuty. W. V. Hassenzahl, and S. L. Wigf,IEEE Trans. Magn. MAG-25. 1516 (1989).

    Article  ADS  Google Scholar 

  18. J. Mazierska, J. Wosik, K. Leong, H. Kinder, and M. Konczykowski, 3rd European Conference on Applied Superconductivity (EUCAS), June 30–July3, 1997. (private communication).

  19. W. Diete, M. Getta, M. Hein, T. Kaiser, G. Müller, H. Piel, and H. Schlick,IEEE Trans. Appl. Supercond. 7, 2 (1997).

    Article  Google Scholar 

  20. D. W. Face, Proceedings of the 30th Anniversary HTS Workshop on Physics, Materials, and Applications, Houston, Texas. March 12–16 (1996), B. Batlogg, C. W. Chu, W. K. Chu, D. U. Grubser, and K. A. Müller, eds. (World Scientific, Singapore, 1996).

  21. A. N. Reznik, A. I. Smirnov, and M. D. Chernobrovtseva,Supercond. Phys. Chem. Technol. 6, 186 (1993).

    Google Scholar 

  22. C. D. Marshal, A. Tokmakoff, I. M. Fishman, C. B. Eom, J. M. Phyllips, and M. D. Fayer,J. Appl Phys. 73, 850 (1993).

    Article  ADS  Google Scholar 

  23. A. F. Mills,Heat Transfer (Richard D. Irwin, Inc. Boston, 1992), pp. 65 and 163.

    MATH  Google Scholar 

  24. Y. S. Toulokian and C. Y. Ho, eds.,Thermophysical Properties of Matter (IFI/Plenum Press, New York, 1977).

    Google Scholar 

  25. P. C. Michael, J. U. Trefny, and B. Yarer,J. Appl. Phys. 72, 107(1992).

    Article  ADS  Google Scholar 

  26. M. A. Hein, W. Diete, M. Getta, S. Hensen, T. Keiser, G. Müller, H. Piel, and H. Schlick, Contributions to the IVth Symposium on HTS in High-Frequency Fields, Asilomar, September 1996,10,J. Supercond. (1997).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wosik, J., Xie, LM., Nesteruk, K. et al. Power handling capabilities of superconducting YBCO thin films: Thermally induced nonlinearity effects. J Supercond 10, 97–107 (1997). https://doi.org/10.1007/BF02763179

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02763179

Key Words

Navigation